-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
519 lines (434 loc) · 17.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import torch
import torch.nn as nn
from torchvision.datasets import CIFAR10
import timm
import os
from train_plots import save_model_metadata
from torchmetrics import ConfusionMatrix
from train_utils import split_dataset
from torch.optim.lr_scheduler import CosineAnnealingLR, LinearLR, SequentialLR
import time
SAVE_EVERY_EPOCH = False
PRETRAINED = True
def get_hyperparameters(model_name):
"""
Retrieve hyperparameters for a given model.
This function returns a dictionary of hyperparameters based on the model name provided.
It currently supports hyperparameters for 'fastvit_t8' model.
Parameters:
model_name (str): The name of the model for which to retrieve hyperparameters.
Returns:
dict: A dictionary containing the hyperparameters 'learning_rate', 'weight_decay', and 'batch_size'.
"""
if model_name.startswith("fastvit_t8"):
# Train from scratch settings
# return {
# "learning_rate": 1e-3,
# "weight_decay": 0.05,
# "batch_size": 256,
# "scheduler": "CosineAnnealingLR",
# "optimizer": "AdamW",
# "hyper_tunning_acc": "OptimizedScratch",
# "ema_decay": 0.9995,
# "num_epochs": 300,
# }
# Fine tuned settings
return {
"learning_rate": 1e-4,
"weight_decay": 0.05,
"batch_size": 256,
"scheduler": "CosineAnnealingLR",
"optimizer": "AdamW",
"hyper_tunning_acc": "OptimizedPretrained",
"ema_decay": 0.9995,
"num_epochs": 300,
}
if model_name.startswith("mobileone_s0"):
# After 50 trials: 0.5785 GOOD
return {
"learning_rate": 0.0024622820877589764,
"weight_decay": 7.987597578812497e-05,
"batch_size": 16,
"scheduler": "StepLR",
"optimizer": "Adam",
"hyper_tunning_acc": 5785,
}
# Default hyperparameters
return {
"learning_rate": 1e-4,
"weight_decay": 1e-5,
"batch_size": 32,
"scheduler": "ReduceLROnPlateau",
"optimizer": "Adam",
}
class EarlyStopping:
def __init__(self, patience=5, delta=0):
self.patience = patience
self.delta = delta
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = float("inf")
def __call__(self, val_loss):
score = -val_loss
if self.best_score is None:
self.best_score = score
self.save_checkpoint(val_loss)
elif score < self.best_score + self.delta:
self.counter += 1
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(val_loss)
self.counter = 0
def save_checkpoint(self, val_loss):
self.val_loss_min = val_loss
def save_model(filename, model):
"""
Save the state dictionary of a PyTorch model to a file.
Args:
filename (str): The name of the file (without extension) where the model's state dictionary will be saved.
model (torch.nn.Module): The PyTorch model whose state dictionary is to be saved.
Returns:
None
"""
os.makedirs("train_models/", exist_ok=True)
full_filename = os.path.join("train_models", f"{filename}.pth")
torch.save(model.state_dict(), full_filename)
def train_model(model_name, pretrained=True):
print(f"Training model: {model_name}, pretrained: {pretrained}...")
### Train Constants
hyperparameters = get_hyperparameters(model_name)
num_epochs = (
hyperparameters["num_epochs"] if "num_epochs" in hyperparameters else 500
)
warmup_epochs = 5
batch_size = hyperparameters["batch_size"]
learning_rate = hyperparameters["learning_rate"]
weight_decay = hyperparameters["weight_decay"]
scheduler_name = hyperparameters["scheduler"]
optimizer_name = hyperparameters["optimizer"]
hyper_tunning_acc = hyperparameters["hyper_tunning_acc"]
learning_rate_stepLR_step_size = 5
early_stopping_patience = 15
early_stopping_delta = 0
print(f"_hyper{hyper_tunning_acc}")
# Load the pre-trained model
model = timm.create_model(model_name, pretrained=pretrained)
data_config = timm.data.resolve_model_data_config(model)
test_transforms = timm.data.create_transform(**data_config, is_training=False)
train_transforms = timm.data.create_transform(**data_config, is_training=True)
print(f"Train transforms: {train_transforms}")
print(f"Validation transforms: {test_transforms}")
### Data
full_train_dataset = CIFAR10(
root="./data", train=True, download=True, transform=train_transforms
)
# Reset the classifier
num_classes = len(full_train_dataset.class_to_idx)
model.reset_classifier(num_classes)
# Split the 50000 train dataset into 40000 training and 10000 validation, with a fixed seed for consistency between trials
train_dataset, val_dataset = split_dataset(full_train_dataset)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=batch_size, shuffle=True, num_workers=2
)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=batch_size, shuffle=False, num_workers=2
)
test_dataset = CIFAR10(
root="./data", train=False, download=True, transform=test_transforms
)
test_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=batch_size, shuffle=False, num_workers=2
)
print(
f"Train size: {len(train_dataset)}, Validation size: {len(val_dataset)}, Test size: {len(test_dataset)}"
)
classes = (
"plane",
"car",
"bird",
"cat",
"deer",
"dog",
"frog",
"horse",
"ship",
"truck",
)
dataset_name = "CIFAR10"
### Model
# Move the model to the appropriate device
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
print(f"Using device: {device}")
model.to(device)
### Training
# Loss function
criterion = nn.CrossEntropyLoss()
# Optimizer
if optimizer_name == "Adam":
optimizer = torch.optim.Adam(
model.parameters(), lr=learning_rate, weight_decay=weight_decay
)
elif optimizer_name == "AdamW":
optimizer = torch.optim.AdamW(
model.parameters(), lr=learning_rate, weight_decay=weight_decay
)
else:
optimizer = torch.optim.SGD(
model.parameters(), lr=learning_rate, weight_decay=weight_decay
)
scheduler = None
# Set up scheduler
if scheduler_name == "StepLR":
scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, step_size=learning_rate_stepLR_step_size, gamma=0.1
)
elif scheduler_name == "CosineAnnealingLR":
# Warmup scheduler
warmup_scheduler = LinearLR(
optimizer, start_factor=1e-6, total_iters=warmup_epochs
)
# Cosine annealing scheduler
cosine_scheduler = CosineAnnealingLR(
optimizer, T_max=num_epochs - warmup_epochs
)
# Combine schedulers
scheduler = SequentialLR(
optimizer,
schedulers=[warmup_scheduler, cosine_scheduler],
milestones=[warmup_epochs],
)
else:
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, "min")
# Early stopping
early_stopping = EarlyStopping(
patience=early_stopping_patience, delta=early_stopping_delta
)
highest_test_acc = 0
highest_test_acc_epoch = 0
def test_model():
print("Testing...")
model.eval()
running_loss = 0.0
running_corrects = 0
all_labels = []
all_preds = []
start_time = time.time()
with torch.no_grad():
for inputs, labels in test_loader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
all_labels.extend(labels.cpu())
all_preds.extend(preds.cpu())
test_time = time.time() - start_time
inference_time = test_time / len(test_dataset)
test_loss = running_loss / len(test_dataset)
test_acc = (running_corrects.float() / len(test_dataset)).cpu()
confusion_matrix = ConfusionMatrix(task="multiclass", num_classes=num_classes)
confusion_matrix.update(torch.tensor(all_labels), torch.tensor(all_preds))
cm = confusion_matrix.compute().cpu().numpy()
print(f"Test Loss: {test_loss:.4f} Acc: {test_acc:.4f}")
return test_loss, test_acc, cm, inference_time, test_time
final_val_acc = 0
losses_train = []
losses_val = []
accuracies_train = []
accuracies_val = []
epochs = []
cm = None
labels_last_epoch = []
preds_last_epoch = []
total_train_time = 0
total_val_time = 0
total_test_time = 0
for epoch in range(num_epochs):
print(f"Epoch {epoch+1}/{num_epochs}")
print("Training...")
labels_last_epoch = []
preds_last_epoch = []
start_time = time.time()
# Training phase
model.train()
running_loss = 0.0
running_corrects = 0
for batch_idx, (inputs, labels) in enumerate(train_loader):
inputs = inputs.to(device)
labels = labels.to(device)
# Zero the parameter gradients
optimizer.zero_grad()
# Forward pass
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# Backward pass and optimization
loss.backward()
optimizer.step()
# Statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
# Print progress every batch
print(
f"Batch {batch_idx}/{len(train_loader)} - Loss: {running_loss / ((batch_idx + 1) * inputs.size(0)):.4f}",
end="\r",
)
train_time = time.time() - start_time
total_train_time += train_time
epoch_loss = running_loss / len(train_dataset)
epoch_acc = running_corrects.float() / len(train_dataset)
losses_train.append(epoch_loss)
accuracies_train.append(epoch_acc)
epochs.append(epoch + 1)
print(
f"Train Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}, Train Time: {train_time:.2f}s"
)
print("Validating...")
start_time = time.time()
# Validation phase
model.eval()
val_running_loss = 0.0
val_running_corrects = 0
with torch.no_grad():
for batch_idx, (inputs, labels) in enumerate(val_loader):
inputs = inputs.to(device)
labels = labels.to(device)
# Forward pass
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# Statistics
val_running_loss += loss.item() * inputs.size(0)
val_running_corrects += torch.sum(preds == labels.data)
# Data for confusion matrix
labels_last_epoch.extend(labels.cpu())
preds_last_epoch.extend(preds.cpu())
# Print progress every batch
print(
f"Batch {batch_idx}/{len(val_loader)} - Loss: {val_running_loss / ((batch_idx + 1) * inputs.size(0)):.4f}",
end="\r",
)
val_time = time.time() - start_time
total_val_time += val_time
val_loss = val_running_loss / len(val_dataset)
val_acc = val_running_corrects.float() / len(val_dataset)
final_val_acc = val_acc.cpu().item()
losses_val.append(val_loss)
accuracies_val.append(val_acc)
early_stopping(val_loss)
print(f"Val Loss: {val_loss:.4f} Acc: {val_acc:.4f}, Val Time: {val_time:.2f}s")
if SAVE_EVERY_EPOCH:
# confusion_matrix = ConfusionMatrix(
# task="multiclass", num_classes=num_classes
# )
# confusion_matrix.update(
# torch.tensor(labels_last_epoch), torch.tensor(preds_last_epoch)
# )
# cm = confusion_matrix.compute().cpu().numpy()
# inference_time = total_val_time / (len(val_dataset) * (epoch + 1))
test_loss, test_acc, cm, inference_time, test_time = test_model()
total_test_time += test_time
total_time = total_train_time + total_val_time + total_test_time
if test_acc > highest_test_acc:
highest_test_acc = test_acc
highest_test_acc_epoch = epoch
model_filename = save_model_metadata(
model_name=model_name,
dataset_name=dataset_name,
train_size=len(train_dataset),
val_size=len(val_dataset),
hyper_tunning_accuracy=hyper_tunning_acc,
test_acc=test_acc,
train_loss=losses_train,
val_loss=losses_val,
train_acc=[acc.cpu().item() for acc in accuracies_train],
val_acc=[acc.cpu().item() for acc in accuracies_val],
epochs=epochs,
cm=cm,
classes=classes,
train_time=total_train_time,
inference_time=inference_time,
metadata={
"learning_rate": learning_rate,
"weight_decay": weight_decay,
"scheduler": scheduler_name,
"learning_rate_stepLR_step_size": learning_rate_stepLR_step_size,
"batch_size": batch_size,
"total_val_time": total_val_time,
"total_test_time": total_test_time,
"total_train_time": total_train_time,
"total_time": total_time,
"hyper_tunning_acc": hyper_tunning_acc,
"final_val_acc": final_val_acc,
"test_loss": test_loss,
"test_acc": test_acc,
"highest_test_acc": highest_test_acc,
"highest_test_acc_epoch": highest_test_acc_epoch,
},
)
save_model(model_filename, model)
if early_stopping.early_stop:
print("Early stopping")
break
# Scheduler step
if scheduler_name == "ReduceLROnPlateau":
scheduler.step(val_loss)
else:
scheduler.step()
print("Training complete, Total time: ", total_train_time + total_val_time, "s")
if not SAVE_EVERY_EPOCH:
test_loss, test_acc, cm, inference_time, test_time = test_model()
total_test_time += test_time
total_time = total_train_time + total_val_time + total_test_time
if test_acc > highest_test_acc:
highest_test_acc = test_acc
highest_test_acc_epoch = epoch
model_filename = save_model_metadata(
model_name=model_name,
dataset_name=dataset_name,
train_size=len(train_dataset),
val_size=len(val_dataset),
hyper_tunning_accuracy=hyper_tunning_acc,
test_acc=test_acc,
train_loss=losses_train,
val_loss=losses_val,
train_acc=[acc.cpu().item() for acc in accuracies_train],
val_acc=[acc.cpu().item() for acc in accuracies_val],
epochs=epochs,
cm=cm,
classes=classes,
train_time=total_train_time,
inference_time=inference_time,
metadata={
"learning_rate": learning_rate,
"weight_decay": weight_decay,
"scheduler": scheduler_name,
"learning_rate_stepLR_step_size": learning_rate_stepLR_step_size,
"batch_size": batch_size,
"total_val_time": total_val_time,
"total_test_time": total_test_time,
"total_train_time": total_train_time,
"total_time": total_time,
"hyper_tunning_acc": hyper_tunning_acc,
"final_val_acc": final_val_acc,
"test_loss": test_loss,
"test_acc": test_acc,
"highest_test_acc": highest_test_acc,
"highest_test_acc_epoch": highest_test_acc_epoch,
},
)
save_model(model_filename, model)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="A valid timm model name")
parser.add_argument(
"--model", metavar="path", required=True, help="The model name to fine tune"
)
args = parser.parse_args()
train_model(args.model, pretrained=PRETRAINED)
# train_model('fastvit_t8')