-
Notifications
You must be signed in to change notification settings - Fork 4
/
index.html
642 lines (542 loc) · 55.4 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="generator" content="pdoc 14.5.1"/>
<title>Lakehouse Engine Documentation</title>
<link rel="icon" href="https://github.com/adidas/lakehouse-engine/blob/master/assets/img/lakehouse_engine_logo_no_bg_160.png?raw=true"/>
<style>/*! * Bootstrap Reboot v5.0.0 (https://getbootstrap.com/) * Copyright 2011-2021 The Bootstrap Authors * Copyright 2011-2021 Twitter, Inc. * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE) * Forked from Normalize.css, licensed MIT (https://github.com/necolas/normalize.css/blob/master/LICENSE.md) */*,::after,::before{box-sizing:border-box}@media (prefers-reduced-motion:no-preference){:root{scroll-behavior:smooth}}body{margin:0;font-family:system-ui,-apple-system,"Segoe UI",Roboto,"Helvetica Neue",Arial,"Noto Sans","Liberation Sans",sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Noto Color Emoji";font-size:1rem;font-weight:400;line-height:1.5;color:#212529;background-color:#fff;-webkit-text-size-adjust:100%;-webkit-tap-highlight-color:transparent}hr{margin:1rem 0;color:inherit;background-color:currentColor;border:0;opacity:.25}hr:not([size]){height:1px}h1,h2,h3,h4,h5,h6{margin-top:0;margin-bottom:.5rem;font-weight:500;line-height:1.2}h1{font-size:calc(1.375rem + 1.5vw)}@media (min-width:1200px){h1{font-size:2.5rem}}h2{font-size:calc(1.325rem + .9vw)}@media (min-width:1200px){h2{font-size:2rem}}h3{font-size:calc(1.3rem + .6vw)}@media (min-width:1200px){h3{font-size:1.75rem}}h4{font-size:calc(1.275rem + .3vw)}@media (min-width:1200px){h4{font-size:1.5rem}}h5{font-size:1.25rem}h6{font-size:1rem}p{margin-top:0;margin-bottom:1rem}abbr[data-bs-original-title],abbr[title]{-webkit-text-decoration:underline dotted;text-decoration:underline dotted;cursor:help;-webkit-text-decoration-skip-ink:none;text-decoration-skip-ink:none}address{margin-bottom:1rem;font-style:normal;line-height:inherit}ol,ul{padding-left:2rem}dl,ol,ul{margin-top:0;margin-bottom:1rem}ol ol,ol ul,ul ol,ul ul{margin-bottom:0}dt{font-weight:700}dd{margin-bottom:.5rem;margin-left:0}blockquote{margin:0 0 1rem}b,strong{font-weight:bolder}small{font-size:.875em}mark{padding:.2em;background-color:#fcf8e3}sub,sup{position:relative;font-size:.75em;line-height:0;vertical-align:baseline}sub{bottom:-.25em}sup{top:-.5em}a{color:#0d6efd;text-decoration:underline}a:hover{color:#0a58ca}a:not([href]):not([class]),a:not([href]):not([class]):hover{color:inherit;text-decoration:none}code,kbd,pre,samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace;font-size:1em;direction:ltr;unicode-bidi:bidi-override}pre{display:block;margin-top:0;margin-bottom:1rem;overflow:auto;font-size:.875em}pre code{font-size:inherit;color:inherit;word-break:normal}code{font-size:.875em;color:#d63384;word-wrap:break-word}a>code{color:inherit}kbd{padding:.2rem .4rem;font-size:.875em;color:#fff;background-color:#212529;border-radius:.2rem}kbd kbd{padding:0;font-size:1em;font-weight:700}figure{margin:0 0 1rem}img,svg{vertical-align:middle}table{caption-side:bottom;border-collapse:collapse}caption{padding-top:.5rem;padding-bottom:.5rem;color:#6c757d;text-align:left}th{text-align:inherit;text-align:-webkit-match-parent}tbody,td,tfoot,th,thead,tr{border-color:inherit;border-style:solid;border-width:0}label{display:inline-block}button{border-radius:0}button:focus:not(:focus-visible){outline:0}button,input,optgroup,select,textarea{margin:0;font-family:inherit;font-size:inherit;line-height:inherit}button,select{text-transform:none}[role=button]{cursor:pointer}select{word-wrap:normal}select:disabled{opacity:1}[list]::-webkit-calendar-picker-indicator{display:none}[type=button],[type=reset],[type=submit],button{-webkit-appearance:button}[type=button]:not(:disabled),[type=reset]:not(:disabled),[type=submit]:not(:disabled),button:not(:disabled){cursor:pointer}::-moz-focus-inner{padding:0;border-style:none}textarea{resize:vertical}fieldset{min-width:0;padding:0;margin:0;border:0}legend{float:left;width:100%;padding:0;margin-bottom:.5rem;font-size:calc(1.275rem + .3vw);line-height:inherit}@media (min-width:1200px){legend{font-size:1.5rem}}legend+*{clear:left}::-webkit-datetime-edit-day-field,::-webkit-datetime-edit-fields-wrapper,::-webkit-datetime-edit-hour-field,::-webkit-datetime-edit-minute,::-webkit-datetime-edit-month-field,::-webkit-datetime-edit-text,::-webkit-datetime-edit-year-field{padding:0}::-webkit-inner-spin-button{height:auto}[type=search]{outline-offset:-2px;-webkit-appearance:textfield}::-webkit-search-decoration{-webkit-appearance:none}::-webkit-color-swatch-wrapper{padding:0}::file-selector-button{font:inherit}::-webkit-file-upload-button{font:inherit;-webkit-appearance:button}output{display:inline-block}iframe{border:0}summary{display:list-item;cursor:pointer}progress{vertical-align:baseline}[hidden]{display:none!important}</style>
<style>/*! syntax-highlighting.css */pre{line-height:125%;}span.linenos{color:inherit; background-color:transparent; padding-left:5px; padding-right:20px;}.pdoc-code .hll{background-color:#ffffcc}.pdoc-code{background:#f8f8f8;}.pdoc-code .c{color:#3D7B7B; font-style:italic}.pdoc-code .err{border:1px solid #FF0000}.pdoc-code .k{color:#008000; font-weight:bold}.pdoc-code .o{color:#666666}.pdoc-code .ch{color:#3D7B7B; font-style:italic}.pdoc-code .cm{color:#3D7B7B; font-style:italic}.pdoc-code .cp{color:#9C6500}.pdoc-code .cpf{color:#3D7B7B; font-style:italic}.pdoc-code .c1{color:#3D7B7B; font-style:italic}.pdoc-code .cs{color:#3D7B7B; font-style:italic}.pdoc-code .gd{color:#A00000}.pdoc-code .ge{font-style:italic}.pdoc-code .gr{color:#E40000}.pdoc-code .gh{color:#000080; font-weight:bold}.pdoc-code .gi{color:#008400}.pdoc-code .go{color:#717171}.pdoc-code .gp{color:#000080; font-weight:bold}.pdoc-code .gs{font-weight:bold}.pdoc-code .gu{color:#800080; font-weight:bold}.pdoc-code .gt{color:#0044DD}.pdoc-code .kc{color:#008000; font-weight:bold}.pdoc-code .kd{color:#008000; font-weight:bold}.pdoc-code .kn{color:#008000; font-weight:bold}.pdoc-code .kp{color:#008000}.pdoc-code .kr{color:#008000; font-weight:bold}.pdoc-code .kt{color:#B00040}.pdoc-code .m{color:#666666}.pdoc-code .s{color:#BA2121}.pdoc-code .na{color:#687822}.pdoc-code .nb{color:#008000}.pdoc-code .nc{color:#0000FF; font-weight:bold}.pdoc-code .no{color:#880000}.pdoc-code .nd{color:#AA22FF}.pdoc-code .ni{color:#717171; font-weight:bold}.pdoc-code .ne{color:#CB3F38; font-weight:bold}.pdoc-code .nf{color:#0000FF}.pdoc-code .nl{color:#767600}.pdoc-code .nn{color:#0000FF; font-weight:bold}.pdoc-code .nt{color:#008000; font-weight:bold}.pdoc-code .nv{color:#19177C}.pdoc-code .ow{color:#AA22FF; font-weight:bold}.pdoc-code .w{color:#bbbbbb}.pdoc-code .mb{color:#666666}.pdoc-code .mf{color:#666666}.pdoc-code .mh{color:#666666}.pdoc-code .mi{color:#666666}.pdoc-code .mo{color:#666666}.pdoc-code .sa{color:#BA2121}.pdoc-code .sb{color:#BA2121}.pdoc-code .sc{color:#BA2121}.pdoc-code .dl{color:#BA2121}.pdoc-code .sd{color:#BA2121; font-style:italic}.pdoc-code .s2{color:#BA2121}.pdoc-code .se{color:#AA5D1F; font-weight:bold}.pdoc-code .sh{color:#BA2121}.pdoc-code .si{color:#A45A77; font-weight:bold}.pdoc-code .sx{color:#008000}.pdoc-code .sr{color:#A45A77}.pdoc-code .s1{color:#BA2121}.pdoc-code .ss{color:#19177C}.pdoc-code .bp{color:#008000}.pdoc-code .fm{color:#0000FF}.pdoc-code .vc{color:#19177C}.pdoc-code .vg{color:#19177C}.pdoc-code .vi{color:#19177C}.pdoc-code .vm{color:#19177C}.pdoc-code .il{color:#666666}</style>
<style>/*! theme.css */:root{--pdoc-background:#fff;}.pdoc{--text:#212529;--muted:#6c757d;--link:#3660a5;--link-hover:#1659c5;--code:#f8f8f8;--active:#fff598;--accent:#eee;--accent2:#c1c1c1;--nav-hover:rgba(255, 255, 255, 0.5);--name:#0066BB;--def:#008800;--annotation:#007020;}</style>
<style>/*! layout.css */html, body{width:100%;height:100%;}html, main{scroll-behavior:smooth;}body{background-color:var(--pdoc-background);}@media (max-width:769px){#navtoggle{cursor:pointer;position:absolute;width:50px;height:40px;top:1rem;right:1rem;border-color:var(--text);color:var(--text);display:flex;opacity:0.8;z-index:999;}#navtoggle:hover{opacity:1;}#togglestate + div{display:none;}#togglestate:checked + div{display:inherit;}main, header{padding:2rem 3vw;}header + main{margin-top:-3rem;}.git-button{display:none !important;}nav input[type="search"]{max-width:77%;}nav input[type="search"]:first-child{margin-top:-6px;}nav input[type="search"]:valid ~ *{display:none !important;}}@media (min-width:770px){:root{--sidebar-width:clamp(12.5rem, 28vw, 22rem);}nav{position:fixed;overflow:auto;height:100vh;width:var(--sidebar-width);}main, header{padding:3rem 2rem 3rem calc(var(--sidebar-width) + 3rem);width:calc(54rem + var(--sidebar-width));max-width:100%;}header + main{margin-top:-4rem;}#navtoggle{display:none;}}#togglestate{position:absolute;height:0;opacity:0;}nav.pdoc{--pad:clamp(0.5rem, 2vw, 1.75rem);--indent:1.5rem;background-color:var(--accent);border-right:1px solid var(--accent2);box-shadow:0 0 20px rgba(50, 50, 50, .2) inset;padding:0 0 0 var(--pad);overflow-wrap:anywhere;scrollbar-width:thin; scrollbar-color:var(--accent2) transparent; z-index:1}nav.pdoc::-webkit-scrollbar{width:.4rem; }nav.pdoc::-webkit-scrollbar-thumb{background-color:var(--accent2); }nav.pdoc > div{padding:var(--pad) 0;}nav.pdoc .module-list-button{display:inline-flex;align-items:center;color:var(--text);border-color:var(--muted);margin-bottom:1rem;}nav.pdoc .module-list-button:hover{border-color:var(--text);}nav.pdoc input[type=search]{display:block;outline-offset:0;width:calc(100% - var(--pad));}nav.pdoc .logo{max-width:calc(100% - var(--pad));max-height:35vh;display:block;margin:0 auto 1rem;transform:translate(calc(-.5 * var(--pad)), 0);}nav.pdoc ul{list-style:none;padding-left:0;}nav.pdoc > div > ul{margin-left:calc(0px - var(--pad));}nav.pdoc li a{padding:.2rem 0 .2rem calc(var(--pad) + var(--indent));}nav.pdoc > div > ul > li > a{padding-left:var(--pad);}nav.pdoc li{transition:all 100ms;}nav.pdoc li:hover{background-color:var(--nav-hover);}nav.pdoc a, nav.pdoc a:hover{color:var(--text);}nav.pdoc a{display:block;}nav.pdoc > h2:first-of-type{margin-top:1.5rem;}nav.pdoc .class:before{content:"class ";color:var(--muted);}nav.pdoc .function:after{content:"()";color:var(--muted);}nav.pdoc footer:before{content:"";display:block;width:calc(100% - var(--pad));border-top:solid var(--accent2) 1px;margin-top:1.5rem;padding-top:.5rem;}nav.pdoc footer{font-size:small;}</style>
<style>/*! content.css */.pdoc{color:var(--text);box-sizing:border-box;line-height:1.5;background:none;}.pdoc .pdoc-button{cursor:pointer;display:inline-block;border:solid black 1px;border-radius:2px;font-size:.75rem;padding:calc(0.5em - 1px) 1em;transition:100ms all;}.pdoc .pdoc-alert{padding:1rem 1rem 1rem calc(1.5rem + 24px);border:1px solid transparent;border-radius:.25rem;background-repeat:no-repeat;background-position:1rem center;margin-bottom:1rem;}.pdoc .pdoc-alert > *:last-child{margin-bottom:0;}.pdoc .pdoc-alert-note {color:#000000;background-color:#f1efef;border-color:#f1f1f1;background-image:url("data:image/svg+xml,%3Csvg%20xmlns%3D%22http%3A//www.w3.org/2000/svg%22%20width%3D%2224%22%20height%3D%2224%22%20fill%3D%22%23084298%22%20viewBox%3D%220%200%2016%2016%22%3E%3Cpath%20d%3D%22M8%2016A8%208%200%201%200%208%200a8%208%200%200%200%200%2016zm.93-9.412-1%204.705c-.07.34.029.533.304.533.194%200%20.487-.07.686-.246l-.088.416c-.287.346-.92.598-1.465.598-.703%200-1.002-.422-.808-1.319l.738-3.468c.064-.293.006-.399-.287-.47l-.451-.081.082-.381%202.29-.287zM8%205.5a1%201%200%201%201%200-2%201%201%200%200%201%200%202z%22/%3E%3C/svg%3E");}.pdoc .pdoc-alert-warning{color:#664d03;background-color:#fff3cd;border-color:#ffecb5;background-image:url("data:image/svg+xml,%3Csvg%20xmlns%3D%22http%3A//www.w3.org/2000/svg%22%20width%3D%2224%22%20height%3D%2224%22%20fill%3D%22%23664d03%22%20viewBox%3D%220%200%2016%2016%22%3E%3Cpath%20d%3D%22M8.982%201.566a1.13%201.13%200%200%200-1.96%200L.165%2013.233c-.457.778.091%201.767.98%201.767h13.713c.889%200%201.438-.99.98-1.767L8.982%201.566zM8%205c.535%200%20.954.462.9.995l-.35%203.507a.552.552%200%200%201-1.1%200L7.1%205.995A.905.905%200%200%201%208%205zm.002%206a1%201%200%201%201%200%202%201%201%200%200%201%200-2z%22/%3E%3C/svg%3E");}.pdoc .pdoc-alert-danger{color:#842029;background-color:#f8d7da;border-color:#f5c2c7;background-image:url("data:image/svg+xml,%3Csvg%20xmlns%3D%22http%3A//www.w3.org/2000/svg%22%20width%3D%2224%22%20height%3D%2224%22%20fill%3D%22%23842029%22%20viewBox%3D%220%200%2016%2016%22%3E%3Cpath%20d%3D%22M5.52.359A.5.5%200%200%201%206%200h4a.5.5%200%200%201%20.474.658L8.694%206H12.5a.5.5%200%200%201%20.395.807l-7%209a.5.5%200%200%201-.873-.454L6.823%209.5H3.5a.5.5%200%200%201-.48-.641l2.5-8.5z%22/%3E%3C/svg%3E");}.pdoc .visually-hidden{position:absolute !important;width:1px !important;height:1px !important;padding:0 !important;margin:-1px !important;overflow:hidden !important;clip:rect(0, 0, 0, 0) !important;white-space:nowrap !important;border:0 !important;}.pdoc h1, .pdoc h2, .pdoc h3{font-weight:300;margin:.3em 0;padding:.2em 0;}.pdoc > section:not(.module-info) h1{font-size:1.5rem;font-weight:500;}.pdoc > section:not(.module-info) h2{font-size:1.4rem;font-weight:500;}.pdoc > section:not(.module-info) h3{font-size:1.3rem;font-weight:500;}.pdoc > section:not(.module-info) h4{font-size:1.2rem;}.pdoc > section:not(.module-info) h5{font-size:1.1rem;}.pdoc a{text-decoration:none;color:var(--link);}.pdoc a:hover{color:var(--link-hover);}.pdoc blockquote{margin-left:2rem;}.pdoc pre{border-top:1px solid var(--accent2);border-bottom:1px solid var(--accent2);margin-top:0;margin-bottom:1em;padding:.5rem 0 .5rem .5rem;overflow-x:auto;background-color:var(--code);}.pdoc code{color:var(--text);padding:.2em .4em;margin:0;font-size:85%;background-color:var(--accent);border-radius:6px;}.pdoc a > code{color:inherit;}.pdoc pre > code{display:inline-block;font-size:inherit;background:none;border:none;padding:0;}.pdoc > section:not(.module-info){margin-bottom:1.5rem;}.pdoc .modulename{margin-top:0;font-weight:bold;}.pdoc .modulename a{color:var(--link);transition:100ms all;}.pdoc .git-button{float:right;border:solid var(--link) 1px;}.pdoc .git-button:hover{background-color:var(--link);color:var(--pdoc-background);}.view-source-toggle-state,.view-source-toggle-state ~ .pdoc-code{display:none;}.view-source-toggle-state:checked ~ .pdoc-code{display:block;}.view-source-button{display:inline-block;float:right;font-size:.75rem;line-height:1.5rem;color:var(--muted);padding:0 .4rem 0 1.3rem;cursor:pointer;text-indent:-2px;}.view-source-button > span{visibility:hidden;}.module-info .view-source-button{float:none;display:flex;justify-content:flex-end;margin:-1.2rem .4rem -.2rem 0;}.view-source-button::before{position:absolute;content:"View Source";display:list-item;list-style-type:disclosure-closed;}.view-source-toggle-state:checked ~ .attr .view-source-button::before,.view-source-toggle-state:checked ~ .view-source-button::before{list-style-type:disclosure-open;}.pdoc .docstring{margin-bottom:1.5rem;}.pdoc section:not(.module-info) .docstring{margin-left:clamp(0rem, 5vw - 2rem, 1rem);}.pdoc .docstring .pdoc-code{margin-left:1em;margin-right:1em;}.pdoc h1:target,.pdoc h2:target,.pdoc h3:target,.pdoc h4:target,.pdoc h5:target,.pdoc h6:target,.pdoc .pdoc-code > pre > span:target{background-color:var(--active);box-shadow:-1rem 0 0 0 var(--active);}.pdoc .pdoc-code > pre > span:target{display:block;}.pdoc div:target > .attr,.pdoc section:target > .attr,.pdoc dd:target > a{background-color:var(--active);}.pdoc *{scroll-margin:2rem;}.pdoc .pdoc-code .linenos{user-select:none;}.pdoc .attr:hover{filter:contrast(0.95);}.pdoc section, .pdoc .classattr{position:relative;}.pdoc .headerlink{--width:clamp(1rem, 3vw, 2rem);position:absolute;top:0;left:calc(0rem - var(--width));transition:all 100ms ease-in-out;opacity:0;}.pdoc .headerlink::before{content:"#";display:block;text-align:center;width:var(--width);height:2.3rem;line-height:2.3rem;font-size:1.5rem;}.pdoc .attr:hover ~ .headerlink,.pdoc *:target > .headerlink,.pdoc .headerlink:hover{opacity:1;}.pdoc .attr{display:block;margin:.5rem 0 .5rem;padding:.4rem .4rem .4rem 1rem;background-color:var(--accent);overflow-x:auto;}.pdoc .classattr{margin-left:2rem;}.pdoc .name{color:var(--name);font-weight:bold;}.pdoc .def{color:var(--def);font-weight:bold;}.pdoc .signature{background-color:transparent;}.pdoc .param, .pdoc .return-annotation{white-space:pre;}.pdoc .signature.multiline .param{display:block;}.pdoc .signature.condensed .param{display:inline-block;}.pdoc .annotation{color:var(--annotation);}.pdoc .view-value-toggle-state,.pdoc .view-value-toggle-state ~ .default_value{display:none;}.pdoc .view-value-toggle-state:checked ~ .default_value{display:inherit;}.pdoc .view-value-button{font-size:.5rem;vertical-align:middle;border-style:dashed;margin-top:-0.1rem;}.pdoc .view-value-button:hover{background:white;}.pdoc .view-value-button::before{content:"show";text-align:center;width:2.2em;display:inline-block;}.pdoc .view-value-toggle-state:checked ~ .view-value-button::before{content:"hide";}.pdoc .inherited{margin-left:2rem;}.pdoc .inherited dt{font-weight:700;}.pdoc .inherited dt, .pdoc .inherited dd{display:inline;margin-left:0;margin-bottom:.5rem;}.pdoc .inherited dd:not(:last-child):after{content:", ";}.pdoc .inherited .class:before{content:"class ";}.pdoc .inherited .function a:after{content:"()";}.pdoc .search-result .docstring{overflow:auto;max-height:25vh;}.pdoc .search-result.focused > .attr{background-color:var(--active);}.pdoc .attribution{margin-top:2rem;display:block;opacity:0.5;transition:all 200ms;filter:grayscale(100%);}.pdoc .attribution:hover{opacity:1;filter:grayscale(0%);}.pdoc .attribution img{margin-left:5px;height:35px;vertical-align:middle;width:70px;transition:all 200ms;}.pdoc table{display:block;width:max-content;max-width:150%;overflow:auto;margin-bottom:1rem;}.pdoc table th, .pdoc table td{padding:12px 13px;border:1px solid var(--accent2);}.pdoc table th{font-weight:600;}</style>
<style>/*! custom.css */</style>
<style>header.pdoc{display:flex;align-items:center;flex-wrap:wrap;}header.pdoc img{max-width:200px;max-height:75px;padding-right:2rem;}header.pdoc input[type=search]{outline-offset:0;font-size:1.5rem;min-width:60%;flex-grow:1;padding-left:.5rem;margin:1.75rem 0;}</style><style>
.pdoc .mermaid-pre {
border: none;
background: none;
}
</style>
<script type="module" defer>
import mermaid from "https://cdn.jsdelivr.net/npm/mermaid@10/dist/mermaid.esm.min.mjs";
/* Re-invoke Mermaid when DOM content changes, for example during search. */
document.addEventListener("DOMContentLoaded", () => {
new MutationObserver(() => mermaid.run()).observe(
document.querySelector("main.pdoc").parentNode,
{childList: true}
);
})
</script></head>
<body>
<nav class="pdoc">
<label id="navtoggle" for="togglestate" class="pdoc-button"><svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'><path stroke-linecap='round' stroke="currentColor" stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/></svg></label>
<input id="togglestate" type="checkbox" aria-hidden="true" tabindex="-1">
<div> <img src="https://github.com/adidas/lakehouse-engine/blob/master/assets/img/lakehouse_engine_logo_no_bg_160.png?raw=true" class="logo" alt="project logo"/>
<input type="search" placeholder="Search..." role="searchbox" aria-label="search"
pattern=".+" required>
<h2>Available Modules</h2>
<ul>
<li><a href="lakehouse_engine.html">Lakehouse Engine</a></li>
<li><a href="lakehouse_engine_usage.html">Lakehouse Engine Usage</a></li>
</ul>
</div>
</nav>
<header class="pdoc">
<h1>Lakehouse Engine Documentation</h1>
</header>
<main class="pdoc">
<p><img align="right" src="assets/img/lakehouse_engine_logo_no_bg_160.png" alt="Lakehouse Engine Logo"></p>
<h1 id="lakehouse-engine">Lakehouse Engine</h1>
<p>A configuration driven Spark framework, written in Python, serving as a scalable and distributed engine for several lakehouse algorithms, data flows and utilities for Data Products.</p>
<hr />
<blockquote>
<p><strong><em>Note:</em></strong> whenever you read Data Product or Data Product team, we want to refer to Teams and use cases, whose main focus is on
leveraging the power of data, on a particular topic, end-to-end (ingestion, consumption...) to achieve insights, supporting faster and better decisions,
which generate value for their businesses. These Teams should not be focusing on building reusable frameworks, but on re-using the existing frameworks to achieve their goals.</p>
</blockquote>
<hr />
<h2 id="main-goals">Main Goals</h2>
<p>The goal of the Lakehouse Engine is to bring some advantages, such as:</p>
<ul>
<li>offer cutting-edge, standard, governed and battle-tested foundations that several Data Product teams can benefit from;</li>
<li>avoid that Data Product teams develop siloed solutions, reducing technical debts and high operating costs (redundant developments across teams);</li>
<li>allow Data Product teams to focus mostly on data-related tasks, avoiding wasting time & resources on developing the same code for different use cases;</li>
<li>benefit from the fact that many teams are reusing the same code, which increases the likelihood that common issues are surfaced and solved faster;</li>
<li>decrease the dependency and learning curve to Spark and other technologies that the Lakehouse Engine abstracts;</li>
<li>speed up repetitive tasks;</li>
<li>reduced vendor lock-in.</li>
</ul>
<hr />
<blockquote>
<p><strong><em>Note:</em></strong> even though you will see a focus on AWS and Databricks, this is just due to the lack of use cases for other technologies like GCP and Azure, but we are open for contribution.</p>
</blockquote>
<hr />
<h2 id="key-features">Key Features</h2>
<p>⭐ <strong>Data Loads:</strong> perform data loads from diverse source types and apply transformations and data quality validations,
ensuring trustworthy data, before integrating it into distinct target types. Additionally, people can also define termination
actions like optimisations or notifications. <a href="#load-data-usage-example">On the usage section</a> you will find an example using all the supported keywords for data loads.</p>
<hr />
<blockquote>
<p><strong><em>Note:</em></strong> The Lakehouse
Engine supports different types of sources and targets, such as, kafka, jdbc, dataframes, files (csv, parquet, json, delta...), sftp, sap bw, sap b4...</p>
</blockquote>
<hr />
<p>⭐ <strong>Transformations:</strong> configuration driven transformations without the need to write any spark code. Transformations can be applied by using the <code>transform_specs</code> in the Data Loads.</p>
<hr />
<blockquote>
<p><strong><em>Note:</em></strong> you can search all the available transformations, as well as checking implementation details and examples <a href="https://adidas.github.io/lakehouse-engine-docs/lakehouse_engine/transformers.html">here</a>.</p>
</blockquote>
<hr />
<p>⭐ <strong>Data Quality Validations:</strong> the Lakehouse Engine uses Great Expectations as a backend and abstracts any implementation
details by offering people the capability to specify what validations to apply on the data, solely using dict/json based configurations.
The Data Quality validations can be applied on:</p>
<ul>
<li>post-mortem (static) data, using the DQ Validator algorithm (<code>execute_dq_validation</code>)</li>
<li>data in-motion, using the <code>dq_specs</code> keyword in the Data Loads, to add it as one more step while loading data.
<a href="#load-data-usage-example">On the usage section</a> you will find an example using this type of Data Quality validations.</li>
</ul>
<p>⭐ <strong>Reconciliation:</strong> useful algorithm to compare two source of data, by defining one version of the <code>truth</code> to compare
against the <code>current</code> version of the data. It can be particularly useful during migrations phases, two compare a few KPIs
and ensure the new version of a table (<code>current</code>), for example, delivers the same vision of the data as the old one (<code>truth</code>).
Find usage examples <a href="lakehouse_engine_usage/reconciliator.html">here</a>.</p>
<p>⭐ <strong>Sensors:</strong> an abstraction to otherwise complex spark code that can be executed in very small single-node clusters
to check if an upstream system or Data Product contains new data since the last execution. With this feature, people can
trigger jobs to run in more frequent intervals and if the upstream does not contain new data, then the rest of the job
exits without creating bigger clusters to execute more intensive data ETL (Extraction, Transformation, and Loading).
Find usage examples <a href="lakehouse_engine_usage/sensor.html">here</a>.</p>
<p>⭐ <strong>Terminators:</strong> this feature allow people to specify what to do as a last action, before finishing a Data Load.
Some examples of actions are: optimising target table, vacuum, compute stats, expose change data feed to external location
or even send e-mail notifications. Thus, it is specifically used in Data Loads, using the <code>terminate_specs</code> keyword.
<a href="#load-data-usage-example">On the usage section</a> you will find an example using terminators.</p>
<p>⭐ <strong>Table Manager:</strong> function <code>manage_table</code>, offers a set of actions to manipulate tables/views in several ways, such as:</p>
<ul>
<li>compute table statistics;</li>
<li>create/drop tables and views;</li>
<li>delete/truncate/repair tables;</li>
<li>vacuum delta tables or locations;</li>
<li>optimize table;</li>
<li>describe table;</li>
<li>show table properties;</li>
<li>execute sql.</li>
</ul>
<p>⭐ <strong>File Manager:</strong> function <code>manage_files</code>, offers a set of actions to manipulate files in several ways, such as:</p>
<ul>
<li>delete Objects in S3;</li>
<li>copy Objects in S3;</li>
<li>restore Objects from S3 Glacier;</li>
<li>check the status of a restore from S3 Glacier;</li>
<li>request a restore of objects from S3 Glacier and wait for them to be copied to a destination.</li>
</ul>
<p>⭐ <strong>Notifications:</strong> you can configure and send email notifications.</p>
<hr />
<blockquote>
<p><strong><em>Note:</em></strong> it can be used as an independent function (<code>send_notification</code>) or as a <code>terminator_spec</code>, using the function <code>notify</code>.</p>
</blockquote>
<hr />
<p>📖 In case you want to check further details you can check the documentation of the <a href="lakehouse_engine/engine.html">Lakehouse Engine facade</a>.</p>
<h2 id="installation">Installation</h2>
<p>As the Lakehouse Engine is built as wheel (look into our <strong>build</strong> and <strong>deploy</strong> make targets) you can install it as any other python package using <strong>pip</strong>.</p>
<pre><code>pip install lakehouse-engine
</code></pre>
<p>Alternatively, you can also upload the wheel to any target of your like (e.g. S3) and perform a pip installation pointing to that target location.</p>
<hr />
<blockquote>
<p><strong><em>Note:</em></strong> The Lakehouse Engine is packaged with plugins or optional dependencies, which are not installed by default. The goal is
to make its installation lighter and to avoid unnecessary dependencies. You can check all the optional dependencies in
the [tool.setuptools.dynamic] section of the <a href="pyproject.toml">pyproject.toml</a> file. They are currently: os, dq, azure and sftp. So,
in case you want to make usage of the Data Quality features offered in the Lakehouse Engine, instead of running the previous command, you should run
the command below, which will bring the core functionalities, plus DQ.</p>
<pre><code>pip install lakehouse-engine[dq]
</code></pre>
<p>In case you are in an environment without pre-install spark and delta, you will also want to install the <code>os</code> optional dependencies, like so:</p>
<pre><code>pip install lakehouse-engine[os]
</code></pre>
<p>And in case you want to install several optional dependencies, you can run a command like:</p>
<pre><code>pip install lakehouse-engine[dq,sftp]
</code></pre>
<p>It is advisable for a Data Product to pin a specific version of the Lakehouse Engine (and have recurring upgrading activities)
to avoid breaking changes in a new release.
In case you don't want to be so conservative, you can pin to a major version, which usually shouldn't include changes that break backwards compatibility.</p>
</blockquote>
<hr />
<h2 id="how-data-products-use-the-lakehouse-engine-framework">How Data Products use the Lakehouse Engine Framework?</h2>
<p><img src="assets/img/lakehouse_dp_usage.drawio.png?raw=true" style="max-width: 800px; height: auto; "/></p>
<p>The Lakehouse Engine is a configuration-first Data Engineering framework, using the concept of ACONs to configure algorithms.
An ACON, stands for Algorithm Configuration and is a JSON representation, as the <a href="#load-data-usage-example">Load Data Usage Example</a> demonstrates. </p>
<p>Below you find described the main keywords you can use to configure and ACON for a Data Load.</p>
<hr />
<blockquote>
<p><strong><em>Note:</em></strong> the usage logic for the other <a href="#key-features">algorithms/features presented</a> will always be similar, but using different keywords,
which you can search for in the examples and documentation provided in the <a href="#key-features">Key Features</a> and <a href="#community-support-and-contributing">Community Support and Contributing</a> sections.</p>
</blockquote>
<hr />
<ul>
<li><strong>Input specifications (input_specs):</strong> specify how to read data. This is a <strong>mandatory</strong> keyword.</li>
<li><strong>Transform specifications (transform_specs):</strong> specify how to transform data.</li>
<li><strong>Data quality specifications (dq_specs):</strong> specify how to execute the data quality process.</li>
<li><strong>Output specifications (output_specs):</strong> specify how to write data to the target. This is a <strong>mandatory</strong> keyword.</li>
<li><strong>Terminate specifications (terminate_specs):</strong> specify what to do after writing into the target (e.g., optimising target table, vacuum, compute stats, expose change data feed to external location, etc).</li>
<li><strong>Execution environment (exec_env):</strong> custom Spark session configurations to be provided for your algorithm (configurations can also be provided from your job/cluster configuration, which we highly advise you to do instead of passing performance related configs here for example).</li>
</ul>
<h2 id="load-data-usage-example">Load Data Usage Example</h2>
<p>You can use the Lakehouse Engine in a <strong>pyspark script</strong> or <strong>notebook</strong>.
Below you can find an example on how to execute a Data Load using the Lakehouse Engine, which is doing the following:</p>
<ol>
<li>Read CSV files, from a specified location, in a streaming fashion and providing a specific schema and some additional
options for properly read the files (e.g. header, delimiter...);</li>
<li>Apply two transformations on the input data:
<ol>
<li>Add a new column having the Row ID;</li>
<li>Add a new column <code>extraction_date</code>, which extracts the date from the <code>lhe_extraction_filepath</code>, based on a regex.</li>
</ol></li>
<li>Apply Data Quality validations and store the result of their execution in the table <code>your_database.order_events_dq_checks</code>:
<ol>
<li>Check if the column <code>omnihub_locale_code</code> is not having null values;</li>
<li>Check if the distinct value count for the column <code>product_division</code> is between 10 and 100;</li>
<li>Check if the max of the column <code>so_net_value</code> is between 10 and 1000;</li>
<li>Check if the length of the values in the column <code>omnihub_locale_code</code> is between 1 and 10;</li>
<li>Check if the mean of the values for the column <code>coupon_code</code> is between 15 and 20.</li>
</ol></li>
<li>Write the output into the table <code>your_database.order_events_with_dq</code> in a delta format, partitioned by <code>order_date_header</code>
and applying a merge predicate condition, ensuring the data is only inserted into the table if it does not match the predicate
(meaning the data is not yet available in the table). Moreover, the <code>insert_only</code> flag is used to specify that there should not
be any updates or deletes in the target table, only inserts;</li>
<li>Optimize the Delta Table that we just wrote in (e.g. z-ordering);</li>
<li>Specify 3 custom Spark Session configurations.</li>
</ol>
<hr />
<blockquote>
<p>⚠️ <strong><em>Note:</em></strong> <code>spec_id</code> is one of the main concepts to ensure you can chain the steps of the algorithm,
so, for example, you can specify the transformations (in <code>transform_specs</code>) of a DataFrame that was read in the <code>input_specs</code>.</p>
</blockquote>
<hr />
<div class="pdoc-code codehilite">
<pre><span></span><code><span class="kn">from</span> <span class="nn">lakehouse_engine.engine</span> <span class="kn">import</span> <span class="n">load_data</span>
<span class="n">acon</span> <span class="o">=</span> <span class="p">{</span>
<span class="s2">"input_specs"</span><span class="p">:</span> <span class="p">[</span>
<span class="p">{</span>
<span class="s2">"spec_id"</span><span class="p">:</span> <span class="s2">"orders_bronze"</span><span class="p">,</span>
<span class="s2">"read_type"</span><span class="p">:</span> <span class="s2">"streaming"</span><span class="p">,</span>
<span class="s2">"data_format"</span><span class="p">:</span> <span class="s2">"csv"</span><span class="p">,</span>
<span class="s2">"schema_path"</span><span class="p">:</span> <span class="s2">"s3://my-data-product-bucket/artefacts/metadata/bronze/schemas/orders.json"</span><span class="p">,</span>
<span class="s2">"with_filepath"</span><span class="p">:</span> <span class="kc">True</span><span class="p">,</span>
<span class="s2">"options"</span><span class="p">:</span> <span class="p">{</span>
<span class="s2">"badRecordsPath"</span><span class="p">:</span> <span class="s2">"s3://my-data-product-bucket/badrecords/order_events_with_dq/"</span><span class="p">,</span>
<span class="s2">"header"</span><span class="p">:</span> <span class="kc">False</span><span class="p">,</span>
<span class="s2">"delimiter"</span><span class="p">:</span> <span class="s2">"</span><span class="se">\u005E</span><span class="s2">"</span><span class="p">,</span>
<span class="s2">"dateFormat"</span><span class="p">:</span> <span class="s2">"yyyyMMdd"</span><span class="p">,</span>
<span class="p">},</span>
<span class="s2">"location"</span><span class="p">:</span> <span class="s2">"s3://my-data-product-bucket/bronze/orders/"</span><span class="p">,</span>
<span class="p">}</span>
<span class="p">],</span>
<span class="s2">"transform_specs"</span><span class="p">:</span> <span class="p">[</span>
<span class="p">{</span>
<span class="s2">"spec_id"</span><span class="p">:</span> <span class="s2">"orders_bronze_with_extraction_date"</span><span class="p">,</span>
<span class="s2">"input_id"</span><span class="p">:</span> <span class="s2">"orders_bronze"</span><span class="p">,</span>
<span class="s2">"transformers"</span><span class="p">:</span> <span class="p">[</span>
<span class="p">{</span><span class="s2">"function"</span><span class="p">:</span> <span class="s2">"with_row_id"</span><span class="p">},</span>
<span class="p">{</span>
<span class="s2">"function"</span><span class="p">:</span> <span class="s2">"with_regex_value"</span><span class="p">,</span>
<span class="s2">"args"</span><span class="p">:</span> <span class="p">{</span>
<span class="s2">"input_col"</span><span class="p">:</span> <span class="s2">"lhe_extraction_filepath"</span><span class="p">,</span>
<span class="s2">"output_col"</span><span class="p">:</span> <span class="s2">"extraction_date"</span><span class="p">,</span>
<span class="s2">"drop_input_col"</span><span class="p">:</span> <span class="kc">True</span><span class="p">,</span>
<span class="s2">"regex"</span><span class="p">:</span> <span class="s2">".*WE_SO_SCL_(</span><span class="se">\\</span><span class="s2">d+).csv"</span><span class="p">,</span>
<span class="p">},</span>
<span class="p">},</span>
<span class="p">],</span>
<span class="p">}</span>
<span class="p">],</span>
<span class="s2">"dq_specs"</span><span class="p">:</span> <span class="p">[</span>
<span class="p">{</span>
<span class="s2">"spec_id"</span><span class="p">:</span> <span class="s2">"check_orders_bronze_with_extraction_date"</span><span class="p">,</span>
<span class="s2">"input_id"</span><span class="p">:</span> <span class="s2">"orders_bronze_with_extraction_date"</span><span class="p">,</span>
<span class="s2">"dq_type"</span><span class="p">:</span> <span class="s2">"validator"</span><span class="p">,</span>
<span class="s2">"result_sink_db_table"</span><span class="p">:</span> <span class="s2">"your_database.order_events_dq_checks"</span><span class="p">,</span>
<span class="s2">"fail_on_error"</span><span class="p">:</span> <span class="kc">False</span><span class="p">,</span>
<span class="s2">"dq_functions"</span><span class="p">:</span> <span class="p">[</span>
<span class="p">{</span>
<span class="s2">"dq_function"</span><span class="p">:</span> <span class="s2">"expect_column_values_to_not_be_null"</span><span class="p">,</span>
<span class="s2">"args"</span><span class="p">:</span> <span class="p">{</span>
<span class="s2">"column"</span><span class="p">:</span> <span class="s2">"omnihub_locale_code"</span>
<span class="p">}</span>
<span class="p">},</span>
<span class="p">{</span>
<span class="s2">"dq_function"</span><span class="p">:</span> <span class="s2">"expect_column_unique_value_count_to_be_between"</span><span class="p">,</span>
<span class="s2">"args"</span><span class="p">:</span> <span class="p">{</span>
<span class="s2">"column"</span><span class="p">:</span> <span class="s2">"product_division"</span><span class="p">,</span>
<span class="s2">"min_value"</span><span class="p">:</span> <span class="mi">10</span><span class="p">,</span>
<span class="s2">"max_value"</span><span class="p">:</span> <span class="mi">100</span>
<span class="p">},</span>
<span class="p">},</span>
<span class="p">{</span>
<span class="s2">"dq_function"</span><span class="p">:</span> <span class="s2">"expect_column_max_to_be_between"</span><span class="p">,</span>
<span class="s2">"args"</span><span class="p">:</span> <span class="p">{</span>
<span class="s2">"column"</span><span class="p">:</span> <span class="s2">"so_net_value"</span><span class="p">,</span>
<span class="s2">"min_value"</span><span class="p">:</span> <span class="mi">10</span><span class="p">,</span>
<span class="s2">"max_value"</span><span class="p">:</span> <span class="mi">1000</span>
<span class="p">}</span>
<span class="p">},</span>
<span class="p">{</span>
<span class="s2">"dq_function"</span><span class="p">:</span> <span class="s2">"expect_column_value_lengths_to_be_between"</span><span class="p">,</span>
<span class="s2">"args"</span><span class="p">:</span> <span class="p">{</span>
<span class="s2">"column"</span><span class="p">:</span> <span class="s2">"omnihub_locale_code"</span><span class="p">,</span>
<span class="s2">"min_value"</span><span class="p">:</span> <span class="mi">1</span><span class="p">,</span>
<span class="s2">"max_value"</span><span class="p">:</span> <span class="mi">10</span>
<span class="p">},</span>
<span class="p">},</span>
<span class="p">{</span>
<span class="s2">"dq_function"</span><span class="p">:</span> <span class="s2">"expect_column_mean_to_be_between"</span><span class="p">,</span>
<span class="s2">"args"</span><span class="p">:</span> <span class="p">{</span>
<span class="s2">"column"</span><span class="p">:</span> <span class="s2">"coupon_code"</span><span class="p">,</span>
<span class="s2">"min_value"</span><span class="p">:</span> <span class="mi">15</span><span class="p">,</span>
<span class="s2">"max_value"</span><span class="p">:</span> <span class="mi">20</span>
<span class="p">}</span>
<span class="p">},</span>
<span class="p">],</span>
<span class="p">},</span>
<span class="p">],</span>
<span class="s2">"output_specs"</span><span class="p">:</span> <span class="p">[</span>
<span class="p">{</span>
<span class="s2">"spec_id"</span><span class="p">:</span> <span class="s2">"orders_silver"</span><span class="p">,</span>
<span class="s2">"input_id"</span><span class="p">:</span> <span class="s2">"check_orders_bronze_with_extraction_date"</span><span class="p">,</span>
<span class="s2">"data_format"</span><span class="p">:</span> <span class="s2">"delta"</span><span class="p">,</span>
<span class="s2">"write_type"</span><span class="p">:</span> <span class="s2">"merge"</span><span class="p">,</span>
<span class="s2">"partitions"</span><span class="p">:</span> <span class="p">[</span><span class="s2">"order_date_header"</span><span class="p">],</span>
<span class="s2">"merge_opts"</span><span class="p">:</span> <span class="p">{</span>
<span class="s2">"merge_predicate"</span><span class="p">:</span> <span class="s2">"""</span>
<span class="s2"> new.sales_order_header = current.sales_order_header</span>
<span class="s2"> AND new.sales_order_schedule = current.sales_order_schedule</span>
<span class="s2"> AND new.sales_order_item=current.sales_order_item</span>
<span class="s2"> AND new.epoch_status=current.epoch_status</span>
<span class="s2"> AND new.changed_on=current.changed_on</span>
<span class="s2"> AND new.extraction_date=current.extraction_date</span>
<span class="s2"> AND new.lhe_batch_id=current.lhe_batch_id</span>
<span class="s2"> AND new.lhe_row_id=current.lhe_row_id</span>
<span class="s2"> """</span><span class="p">,</span>
<span class="s2">"insert_only"</span><span class="p">:</span> <span class="kc">True</span><span class="p">,</span>
<span class="p">},</span>
<span class="s2">"db_table"</span><span class="p">:</span> <span class="s2">"your_database.order_events_with_dq"</span><span class="p">,</span>
<span class="s2">"options"</span><span class="p">:</span> <span class="p">{</span>
<span class="s2">"checkpointLocation"</span><span class="p">:</span> <span class="s2">"s3://my-data-product-bucket/checkpoints/template_order_events_with_dq/"</span>
<span class="p">},</span>
<span class="p">}</span>
<span class="p">],</span>
<span class="s2">"terminate_specs"</span><span class="p">:</span> <span class="p">[</span>
<span class="p">{</span>
<span class="s2">"function"</span><span class="p">:</span> <span class="s2">"optimize_dataset"</span><span class="p">,</span>
<span class="s2">"args"</span><span class="p">:</span> <span class="p">{</span>
<span class="s2">"db_table"</span><span class="p">:</span> <span class="s2">"your_database.order_events_with_dq"</span>
<span class="p">}</span>
<span class="p">}</span>
<span class="p">],</span>
<span class="s2">"exec_env"</span><span class="p">:</span> <span class="p">{</span>
<span class="s2">"spark.databricks.delta.schema.autoMerge.enabled"</span><span class="p">:</span> <span class="kc">True</span><span class="p">,</span>
<span class="s2">"spark.databricks.delta.optimizeWrite.enabled"</span><span class="p">:</span> <span class="kc">True</span><span class="p">,</span>
<span class="s2">"spark.databricks.delta.autoCompact.enabled"</span><span class="p">:</span> <span class="kc">True</span><span class="p">,</span>
<span class="p">},</span>
<span class="p">}</span>
<span class="n">load_data</span><span class="p">(</span><span class="n">acon</span><span class="o">=</span><span class="n">acon</span><span class="p">)</span>
</code></pre>
</div>
<hr />
<blockquote>
<p><strong><em>Note:</em></strong> Although it is possible to interact with the Lakehouse Engine functions directly from your python code,
instead of relying on creating an ACON dict and use the engine api, we do not ensure the stability across new
Lakehouse Engine releases when calling internal functions (not exposed in the facade) directly.</p>
</blockquote>
<hr />
<hr />
<blockquote>
<p><strong><em>Note:</em></strong> ACON structure might change across releases, please test your Data Product first before updating to a
new version of the Lakehouse Engine in your Production environment.</p>
</blockquote>
<hr />
<h2 id="who-maintains-the-lakehouse-engine">Who maintains the Lakehouse Engine?</h2>
<p>The Lakehouse Engine is under active development and production usage by the Adidas Lakehouse Foundations Engineering team. </p>
<h2 id="community-support-and-contributing">Community Support and Contributing</h2>
<p>🤝 Do you want to contribute or need any support? Check out all the details in <a href="https://github.com/adidas/lakehouse-engine/blob/master/CONTRIBUTING.md">CONTRIBUTING.md</a>.</p>
<h2 id="license-and-software-information">License and Software Information</h2>
<p>© adidas AG</p>
<p>adidas AG publishes this software and accompanied documentation (if any) subject to the terms of the <a href="https://github.com/adidas/lakehouse-engine/blob/master/LICENSE.txt">license</a>
with the aim of helping the community with our tools and libraries which we think can be also useful for other people.
You will find a copy of the <a href="https://github.com/adidas/lakehouse-engine/blob/master/LICENSE.txt">license</a> in the root folder of this package. All rights not explicitly granted
to you under the <a href="https://github.com/adidas/lakehouse-engine/blob/master/LICENSE.txt">license</a> remain the sole and exclusive property of adidas AG.</p>
<hr />
<blockquote>
<p><strong><em>NOTICE:</em></strong> The software has been designed solely for the purposes described in this ReadMe file. The software is NOT designed,
tested or verified for productive use whatsoever, nor or for any use related to high risk environments, such as health care,
highly or fully autonomous driving, power plants, or other critical infrastructures or services.</p>
</blockquote>
<hr />
<p>If you want to contact adidas regarding the software, you can mail us at [email protected].</p>
<p>For further information open the <a href="https://github.com/adidas/adidas-contribution-guidelines/wiki/Terms-and-conditions">adidas terms and conditions</a> page.</p>
</main>
<script>
function escapeHTML(html) {
return document.createElement('div').appendChild(document.createTextNode(html)).parentNode.innerHTML;
}
const originalContent = document.querySelector("main.pdoc");
let currentContent = originalContent;
function setContent(innerHTML) {
let elem;
if (innerHTML) {
elem = document.createElement("main");
elem.classList.add("pdoc");
elem.innerHTML = innerHTML;
} else {
elem = originalContent;
}
if (currentContent !== elem) {
currentContent.replaceWith(elem);
currentContent = elem;
}
}
function getSearchTerm() {
return (new URL(window.location)).searchParams.get("search");
}
const searchBox = document.querySelector(".pdoc input[type=search]");
searchBox.addEventListener("input", function () {
let url = new URL(window.location);
if (searchBox.value.trim()) {
url.hash = "";
url.searchParams.set("search", searchBox.value);
} else {
url.searchParams.delete("search");
}
history.replaceState("", "", url.toString());
onInput();
});
window.addEventListener("popstate", onInput);
let search, searchErr;
async function initialize() {
try {
search = await new Promise((resolve, reject) => {
const script = document.createElement("script");
script.type = "text/javascript";
script.async = true;
script.onload = () => resolve(window.pdocSearch);
script.onerror = (e) => reject(e);
script.src = "search.js";
document.getElementsByTagName("head")[0].appendChild(script);
});
} catch (e) {
console.error("Cannot fetch pdoc search index");
searchErr = "Cannot fetch search index.";
}
onInput();
document.querySelector("nav.pdoc").addEventListener("click", e => {
if (e.target.hash) {
searchBox.value = "";
searchBox.dispatchEvent(new Event("input"));
}
});
}
function onInput() {
setContent((() => {
const term = getSearchTerm();
if (!term) {
return null
}
if (searchErr) {
return `<h3>Error: ${searchErr}</h3>`
}
if (!search) {
return "<h3>Searching...</h3>"
}
window.scrollTo({top: 0, left: 0, behavior: 'auto'});
const results = search(term);
let html;
if (results.length === 0) {
html = `No search results for '${escapeHTML(term)}'.`
} else {
html = `<h4>${results.length} search result${results.length > 1 ? "s" : ""} for '${escapeHTML(term)}'.</h4>`;
}
for (let result of results.slice(0, 10)) {
let doc = result.doc;
let url = `${doc.modulename.replaceAll(".", "/")}.html`;
if (doc.qualname) {
url += `#${doc.qualname}`;
}
let heading;
switch (result.doc.kind) {
case "function":
if (doc.fullname.endsWith(".__init__")) {
heading = `<span class="name">${doc.fullname.replace(/\.__init__$/, "")}</span>${doc.signature}`;
} else {
heading = `<span class="def">${doc.funcdef}</span> <span class="name">${doc.fullname}</span>${doc.signature}`;
}
break;
case "class":
heading = `<span class="def">class</span> <span class="name">${doc.fullname}</span>`;
if (doc.bases)
heading += `<wbr>(<span class="base">${doc.bases}</span>)`;
heading += `:`;
break;
case "variable":
heading = `<span class="name">${doc.fullname}</span>`;
if (doc.annotation)
heading += `<span class="annotation">${doc.annotation}</span>`;
if (doc.default_value)
heading += `<span class="default_value"> = ${doc.default_value}</span>`;
break;
default:
heading = `<span class="name">${doc.fullname}</span>`;
break;
}
html += `
<section class="search-result">
<a href="${url}" class="attr ${doc.kind}">${heading}</a>
<div class="docstring">${doc.doc}</div>
</section>
`;
}
return html;
})());
}
if (getSearchTerm()) {
initialize();
searchBox.value = getSearchTerm();
onInput();
} else {
searchBox.addEventListener("focus", initialize, {once: true});
}
searchBox.addEventListener("keydown", e => {
if (["ArrowDown", "ArrowUp", "Enter"].includes(e.key)) {
let focused = currentContent.querySelector(".search-result.focused");
if (!focused) {
currentContent.querySelector(".search-result").classList.add("focused");
} else if (
e.key === "ArrowDown"
&& focused.nextElementSibling
&& focused.nextElementSibling.classList.contains("search-result")
) {
focused.classList.remove("focused");
focused.nextElementSibling.classList.add("focused");
focused.nextElementSibling.scrollIntoView({
behavior: "smooth",
block: "nearest",
inline: "nearest"
});
} else if (
e.key === "ArrowUp"
&& focused.previousElementSibling
&& focused.previousElementSibling.classList.contains("search-result")
) {
focused.classList.remove("focused");
focused.previousElementSibling.classList.add("focused");
focused.previousElementSibling.scrollIntoView({
behavior: "smooth",
block: "nearest",
inline: "nearest"
});
} else if (
e.key === "Enter"
) {
focused.querySelector("a").click();
}
}
});
</script></body>
</html>