forked from Preparation-Publication-BD2K/db_compress
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_learner.cpp
214 lines (196 loc) · 9.11 KB
/
model_learner.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#include "model_learner.h"
#include "base.h"
#include "model.h"
#include <vector>
#include <set>
#include <map>
#include <memory>
#include <algorithm>
namespace db_compress {
namespace {
// New Models are appended to the end of vector
bool CreateModel(const Schema& schema, const std::vector<size_t>& predictors,
size_t target_var, const CompressionConfig& config,
std::vector<std::unique_ptr<Model> >* vec) {
double err = config.allowed_err[target_var];
int attr_type = schema.attr_type[target_var];
const std::vector<ModelCreator*>& creators = GetAttrModel(attr_type);
bool success = false;
for (size_t i = 0; i < creators.size(); ++i) {
ModelCreator* creator = creators[i];
std::unique_ptr<Model> model(creator->CreateModel(schema, predictors, target_var, err));
if (model != nullptr) {
model->SetCreatorIndex(i);
vec->push_back(std::move(model));
success = true;
}
}
return success;
}
} // anonymous namespace
int ModelLearner::GetModelCost(const std::vector<size_t>& predictors, size_t target) const {
std::set<size_t> predictors_(predictors.begin(), predictors.end());
auto it = stored_model_cost_.find(make_pair(predictors_, target));
if (it == stored_model_cost_.end())
return -1;
else
return it->second;
}
void ModelLearner::StoreModelCost(const Model& model) {
std::set<size_t> predictors(model.GetPredictorList().begin(), model.GetPredictorList().end());
size_t target = model.GetTargetVar();
int previous_cost = GetModelCost(model.GetPredictorList(), model.GetTargetVar());
if (previous_cost == -1 || previous_cost > model.GetModelCost())
stored_model_cost_[make_pair(predictors, target)] = std::max(model.GetModelCost(), 0);
}
ModelLearner::ModelLearner(const Schema& schema, const CompressionConfig& config) :
schema_(schema),
config_(config),
stage_(0),
selected_model_(schema.attr_type.size()),
model_predictor_list_(schema.attr_type.size()) {
if (config_.skip_model_learning) {
ordered_attr_list_ = config.ordered_attr_list;
model_predictor_list_ = config.model_predictor_list;
stage_ = 1;
inactive_attr_.clear();
} else if (config_.sort_by_attr != -1) {
ordered_attr_list_.push_back(config_.sort_by_attr);
inactive_attr_.insert(config_.sort_by_attr);
model_predictor_list_[config_.sort_by_attr].clear();
}
InitActiveModelList();
}
void ModelLearner::FeedTuple(const Tuple& tuple) {
switch (stage_) {
case 0:
for (size_t i = 0; i < active_model_list_.size(); ++i )
active_model_list_[i]->FeedTuple(tuple);
break;
case 1:
{
Tuple tuple_ = tuple;
for (size_t i = 0; i < schema_.attr_type.size(); ++i ) {
size_t attr_index = ordered_attr_list_[i];
// Since decoding is lossy, we have to use the predicted predictors
// instead of the original predictors during this phase of training
if (inactive_attr_.count(attr_index) > 0) {
const AttrValue* attr;
selected_model_[attr_index]->GetProbInterval(tuple_, NULL, &attr);
tuple_.attr[attr_index] = attr;
}
}
for (size_t i = 0; i < active_model_list_.size(); ++i )
active_model_list_[i]->FeedTuple(tuple_);
}
}
}
void ModelLearner::EndOfData() {
switch (stage_) {
case 0:
// At the end of data, we inform each of the active models, let them compute their
// model cost, and then store them into the stored_model_cost_ variable.
for (size_t i = 0; i < active_model_list_.size(); i++ )
active_model_list_[i]->EndOfData();
for (size_t i = 0; i < active_model_list_.size(); i++ )
StoreModelCost(*active_model_list_[i]);
// Now if there is no longer any active model, we add the best model to ordered_attr_list_
// and then start a new iteration. Note that in order to save memory space, we only store
// the target variable and predictor variables, the actual model will be learned again
// during the second stage of the algorithm.
if (active_model_list_.size() == 0) {
int next_attr = -1;
for (size_t i = 0; i < schema_.attr_type.size(); ++i)
if (inactive_attr_.count(i) == 0) {
if (next_attr == -1)
next_attr = i;
else if (GetModelCost(model_predictor_list_[i], i) <
GetModelCost(model_predictor_list_[next_attr], next_attr))
next_attr = i;
}
ordered_attr_list_.push_back(next_attr);
inactive_attr_.insert(next_attr);
// Now if we reach the point where models for every attribute has been selected,
// we mark the end of this stage and start next stage. Otherwise we simply start
// another iteration.
if (ordered_attr_list_.size() == schema_.attr_type.size()) {
stage_ = 1;
inactive_attr_.clear();
}
}
break;
case 1:
for (size_t i = 0; i < active_model_list_.size(); ++i) {
active_model_list_[i]->EndOfData();
int target_var = active_model_list_[i]->GetTargetVar();
inactive_attr_.insert(target_var);
if (selected_model_[target_var] == nullptr ||
selected_model_[target_var]->GetModelCost() >
active_model_list_[i]->GetModelCost() )
selected_model_[target_var] = std::move(active_model_list_[i]);
}
if (inactive_attr_.size() == schema_.attr_type.size())
stage_ = 2;
}
// If we still haven't reached end stage, init active models
if (stage_ != 2)
InitActiveModelList();
}
void ModelLearner::InitActiveModelList() {
active_model_list_.clear();
if (stage_ == 0) {
// In the first stage, we initially create an empty model for every inactive attribute.
// Then we expand each of these models.
for (size_t i = 0; i < schema_.attr_type.size(); ++i )
if (inactive_attr_.count(i) == 0) {
if (GetModelCost(std::vector<size_t>(), i) == -1) {
CreateModel(schema_, std::vector<size_t>(), i, config_, &active_model_list_);
} else {
// We empty the current predictor list, and search from scratch
model_predictor_list_[i].clear();
// We choose the models based on a greedy criterion, we choose the predictor
// attribute that can reduce the cost in largest amount. During this process,
// all models with unknown cost (a.k.a. "active" models) are added to a list,
// and then choose the "inactive" model with lowest cost to expand.
while (1) {
std::vector<size_t> predictor_list(model_predictor_list_[i]);
std::set<size_t> predictor_set(predictor_list.begin(), predictor_list.end());
int previous_cost = GetModelCost(predictor_list, i);
// Add a new slot in predictor list
predictor_list.push_back(0);
bool model_expanded = false;
for (size_t attr : ordered_attr_list_)
if (predictor_set.count(attr) == 0) {
predictor_list[predictor_set.size()] = attr;
if (GetModelCost(predictor_list, i) == -1) {
// Multiple models may be associated for any predictor and target
CreateModel(schema_, predictor_list,
i, config_, &active_model_list_);
} else if (GetModelCost(predictor_list, i) < previous_cost) {
model_predictor_list_[i] = predictor_list;
previous_cost = GetModelCost(predictor_list, i);
model_expanded = true;
}
}
// If current model can not be expanded, break the loop
if (!model_expanded) break;
}
}
}
} else {
// In the second stage, we simply relearn the model selected from the first stage,
// no model expansion is needed. However, we need to assure that the models that are
// currently learning have predictors all lies within the range of target vars of
// learned models.
for (size_t i = 0; i < schema_.attr_type.size(); ++i ) {
bool learnable = true;
for (size_t attr : model_predictor_list_[i])
if (inactive_attr_.count(attr) == 0)
learnable = false;
if (!learnable) continue;
if (!CreateModel(schema_, model_predictor_list_[i], i, config_, &active_model_list_))
std::cerr << "Missing Interpreter or Invalid Model Creator\n";
}
}
}
} // namespace db_compress