1
+ from kllr import *
2
+ import numpy as np
3
+ import matplotlib .pyplot as plt
4
+ import pandas as pd
5
+ import sys
6
+
7
+ print (sys .path )
8
+
9
+ df = pd .read_csv ('./data/TNG300_Halos.csv' )
10
+ print (df .columns )
11
+ x = np .array (df .M200 )
12
+ y = np .array (df .MGas )
13
+
14
+
15
+
16
+ # data, ax = Plot_Fit(df, 'M200', 'MGas', show_data=True, cutoff=13.5, ax=None) ## PASSED
17
+ # data, ax = Plot_Fit_Split(df, 'M200', 'MGas', 'z_form', split_bins = [0.0, 0.2, 0.3, 0.6]) ## PASSED
18
+ # data, ax = Plot_Fit_Params(df, 'M200', 'MGas') ## PASSED
19
+ # data, ax = Plot_Fit_Params_Split(df, 'M200', 'MGas', 'z_form', split_bins = [0.0, 0.2, 0.3, 0.6])
20
+ # data, ax = Plot_Correlation(df, 'M200', 'MGas', 'MStar') ## PASSED
21
+ # data, ax = Plot_Correlation_Split(df, 'M200', 'MGas', 'MStar', 'z_form', split_bins = [0.0, 0.2, 0.3, 0.6]) ##PASSED
22
+ # data, ax = Plot_Covariance(df, 'M200', 'MGas', 'MStar', GaussianWidth=0.2)
23
+ # data, ax = Plot_Covariance_Split(df, 'M200', 'MGas', 'MStar', 'z_form', split_bins = [0.0, 0.2, 0.3, 0.6]) ## PASSED
24
+ # ax = Plot_Correlation_Matrix(df, 'M200', ['MGas', 'MGas_T', 'sigma_DM_3D']) ## PASSED
25
+ # ax = Plot_Correlation_Matrix_Split(df, 'M200', ['MGas', 'MGas_T', 'sigma_DM_3D'], 'z_form', split_bins=[0.0, 0.2, 0.3, 0.6]) ## PASSED
26
+ # ax = Plot_Covariance_Matrix(df, 'M200', ['MGas', 'MStar', 'sigma_DM_3D']) ## PASSED
27
+ # ax = Plot_Covariance_Matrix_Split(df, 'M200', ['MGas', 'MStar', 'MStar_BCG100'], 'z_form', split_bins=[0.0, 0.2, 0.3, 0.6]) ## PASSED
28
+ # data, ax = Plot_Residual(df, 'M200', 'MGas') ## PASSED
29
+ data , ax = Plot_Residual_Split (df , 'M200' , 'MGas' , 'z_form' , split_bins = [0.0 , 0.2 , 0.3 , 0.6 ])
30
+
31
+ plt .show ()
0 commit comments