Test all weights have been trained
def test_conv_net():
image = tf.placeholder(tf.float32, (None, 100, 100, 3)
model = Model(image)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
before = sess.run(tf.trainable_variables())
_ = sess.run(model.train, feed_dict={
image: np.ones((1, 100, 100, 3)),
})
after = sess.run(tf.trainable_variables())
for b, a, n in zip(before, after):
# Make sure something changed.
assert (b != a).any()