forked from HumanSignal/label-studio-ml-backend
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdocker-compose.yml
45 lines (44 loc) · 1.74 KB
/
docker-compose.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
version: "3.8"
services:
huggingface_ner:
container_name: huggingface_ner
image: heartexlabs/label-studio-ml-backend:huggingfacener-master
build:
context: .
args:
TEST_ENV: ${TEST_ENV}
environment:
# If you are using this model for training, you have to connect it to Label Studio
- LABEL_STUDIO_HOST=http://localhost:8080
- LABEL_STUDIO_API_KEY=your-api-key
# Use any model for [AutoModelForSequenceClassification](https://huggingface.co/transformers/v3.0.2/model_doc/auto.html#automodelforsequenceclassification)
- BASELINE_MODEL_NAME=dslim/bert-base-NER
# change it to this model if you want to run training
# - BASELINE_MODEL_NAME=distilbert/distilbert-base-uncased
# The model directory for the fine-tuned checkpoints (relative to $MODEL_DIR)
- FINETUNED_MODEL_NAME=finetuned_model
# The number of labeled tasks to download from Label Studio before starting training
- START_TRAINING_EACH_N_UPDATES=1
# Learning rate
- LEARNING_RATE=2e-5
# Number of epochs
- NUM_TRAIN_EPOCHS=3
# Weight decay
- WEIGHT_DECAY=0.01
# specify these parameters if you want to use basic auth for the model server
- BASIC_AUTH_USER=
- BASIC_AUTH_PASS=
# set the log level for the model server
- LOG_LEVEL=DEBUG
# any other parameters that you want to pass to the model server
- ANY=PARAMETER
# specify the number of workers and threads for the model server
- WORKERS=1
- THREADS=8
# specify the model directory (likely you don't need to change this)
- MODEL_DIR=/data/models
ports:
- "9090:9090"
volumes:
- "./data/server:/data"
- "./data/.cache:/root/.cache"