forked from HumanSignal/label-studio-ml-backend
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDockerfile
62 lines (49 loc) · 1.92 KB
/
Dockerfile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
FROM pytorch/pytorch:2.1.2-cuda12.1-cudnn8-runtime
ARG DEBIAN_FRONTEND=noninteractive
ARG TEST_ENV
WORKDIR /app
RUN conda update conda -y
RUN --mount=type=cache,target="/var/cache/apt",sharing=locked \
--mount=type=cache,target="/var/lib/apt/lists",sharing=locked \
apt-get -y update \
&& apt-get install -y git \
&& apt-get install -y wget \
&& apt-get install -y g++ freeglut3-dev build-essential libx11-dev \
libxmu-dev libxi-dev libglu1-mesa libglu1-mesa-dev libfreeimage-dev \
&& apt-get -y install ffmpeg libsm6 libxext6 libffi-dev python3-dev python3-pip gcc
ENV PYTHONUNBUFFERED=1 \
PYTHONDONTWRITEBYTECODE=1 \
PIP_CACHE_DIR=/.cache \
PORT=9090 \
WORKERS=2 \
THREADS=4 \
CUDA_HOME=/usr/local/cuda
RUN conda install -c "nvidia/label/cuda-12.1.1" cuda -y
ENV CUDA_HOME=/opt/conda \
TORCH_CUDA_ARCH_LIST="6.0;6.1;7.0;7.5;8.0;8.6+PTX;8.9;9.0"
# install base requirements
COPY requirements-base.txt .
RUN --mount=type=cache,target=${PIP_CACHE_DIR},sharing=locked \
pip install -r requirements-base.txt
# install model requirements
COPY requirements.txt .
RUN --mount=type=cache,target=${PIP_CACHE_DIR},sharing=locked \
pip3 install -r requirements.txt
# install test requirements if needed
COPY requirements-test.txt .
# build only when TEST_ENV="true"
RUN --mount=type=cache,target=${PIP_CACHE_DIR},sharing=locked \
if [ "$TEST_ENV" = "true" ]; then \
pip3 install -r requirements-test.txt; \
fi
WORKDIR /app
COPY . ./
# Download the YOLO models
RUN /bin/sh -c 'if [ ! -f /app/models/yolov8m.pt ]; then \
yolo predict model=/app/models/yolov8m.pt source=/app/tests/car.jpg \
&& yolo predict model=/app/models/yolov8n.pt source=/app/tests/car.jpg \
&& yolo predict model=/app/models/yolov8n-cls.pt source=/app/tests/car.jpg \
&& yolo predict model=/app/models/yolov8n-seg.pt source=/app/tests/car.jpg; \
fi'
ENV PYTHONPATH=/app
CMD ["/app/start.sh"]