-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathai4-metadata.yml
56 lines (50 loc) · 2.39 KB
/
ai4-metadata.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
metadata_version: 2.0.0
title: AI4life model loader
summary: "Support for inference of the AI4LIFE model on the marketplace."
description: |-
The [BioImage Model Zoo](https://bioimage.io/#/) is a community-driven platform that
provides standardized deep learning models for bioimage analysis.
This module integrates models from the **BioImage.IO** package into the **AI4EOSC** Marketplace
dashboard, specifically those using PyTorch weights and following the v0.5 format.
The module allows users to seamlessly explore, deploy, and utilize these models within
the AI4EOSC ecosystem, providing a user-friendly interface for advanced bioimage analysis.
**Key Features**
- Model Discovery: Automatically fetch and list models available in BioImage.IO that meet the criteria (PyTorch weights, v0.5 format).
- Metadata Visualization: Display essential information about each model,
such as input/output specifications, authors, license details, and documentation.
- Seamless Deployment: Enable one-click deployment of models to AI4EOSC compute resources.
- Model Preview: Provide an interactive preview to test models on sample data directly in the dashboard.
**References**:
- BioImage.Io github repository: https://github.com/bioimage-io/core-bioimage-io-python
- Documentation: https://bioimage-io.github.io/core-bioimage-io-python/bioimageio/core
dates:
created: '2024-11-11'
updated: '2024-11-11'
links:
ai4_template: ai4-template-adv/2.0.1
source_code: https://github.com/ai4os/ai4os-ai4life-loader
docker_image: ai4oshub/ai4os-ai4life-loader
# documentation: http://add-some-documentation.com
# dataset: http://add-some-url-pointing-to-your-dataset.com
# weights: http://add-some-weights-url.com
# citation: http://add-some-DOI-url.com
# base_model: http://add-some-link-to-another-model.com
tags: # required property, add user-defined tags that you consider relevant
- deep learning
- segmentation
- 2D input
- 3D input
- UNet
- Segment Anything
- cellpose
tasks: # required property, uncomment together with relevant items
- Computer Vision
- Classification
categories: # required property, uncomment together with relevant items
- AI4 inference
- AI4 tools
libraries: # required property, uncomment together with relevant items
- PyTorch
- Scikit-learn
data-type: # optional, uncomment together with relevant items
- Image