-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain_mask_detector.py
128 lines (108 loc) · 4.19 KB
/
train_mask_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# required packages
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.layers import AveragePooling2D
from tensorflow.keras.layers import Dropout
from tensorflow.keras.layers import Flatten
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Input
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.preprocessing.image import load_img
from tensorflow.keras.utils import to_categorical
from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
import matplotlib.pyplot as plt
import numpy as np
import os
# initializing batch size,epochs,learning rate
learning_rate = 1e-4
epochs = 20
batch_size = 32
# basic directory to dataset
data_set = r"C:\Users\Public\facemask\dataset"
classes = ["with_mask", "without_mask"]
# loading info of dataset & initializing it
print("loading images...")
data = []
labels = []
for class_temp in classes:
directory = os.path.join(data_set, class_temp)
for pic in os.listdir(directory):
image_path = os.path.join(directory, pic)
img = load_img(image_path, target_size=(224, 224))
img = img_to_array(img)
img = preprocess_input(img)
data.append(img)
labels.append(class_temp)
# one hot encoding
lb = LabelBinarizer()
labels = lb.fit_transform(labels)
labels = to_categorical(labels)
data = np.array(data, dtype="float32")
labels = np.array(labels)
(trainX, testX, trainY, testY) = train_test_split(data, labels,
test_size=0.20, stratify=labels, random_state=42)
# image generator for data augmentation
aug = ImageDataGenerator(
rotation_range=20,
zoom_range=0.15,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.15,
horizontal_flip=True,
fill_mode="nearest")
# using the MobileNetV2 network
base_model = MobileNetV2(weights="imagenet", include_top=False,
input_tensor=Input(shape=(224, 224, 3)))
# making the head of the model for base model
head_model = base_model.output
head_model = AveragePooling2D(pool_size=(7, 7))(head_model)
head_model = Flatten(name="flatten")(head_model)
head_model = Dense(128, activation="relu")(head_model)
head_model = Dropout(0.5)(head_model)
head_model = Dense(2, activation="softmax")(head_model)
# making model by turning off FC
model = Model(inputs=base_model.input, outputs=head_model)
# freezing base layers
for layer in base_model.layers:
layer.trainable = False
# compile our model
print("compiling model...")
optimize = Adam(lr=learning_rate, decay=learning_rate / epochs)
model.compile(loss="binary_crossentropy", optimizer=optimize,
metrics=["accuracy"])
# train the head of the network
print("training head...")
H = model.fit(
aug.flow(trainX, trainY, batch_size=batch_size),
steps_per_epoch=len(trainX) // batch_size,
validation_data=(testX, testY),
validation_steps=len(testX) // batch_size,
epochs=epochs)
# make predictions on the testing set
print("[INFO] evaluating network...")
predIdxs = model.predict(testX, batch_size=batch_size)
predIdxs = np.argmax(predIdxs, axis=1)
# show a nicely formatted classification report
print(classification_report(testY.argmax(axis=1), predIdxs,
target_names=lb.classes_))
# saving the model to disk with h5 format
print("saving mask detector model...")
model.save("mask_detector.model", save_format="h5")
# plotting the training loss and accuracy
N = epochs
plt.style.use("ggplot")
plt.figure()
plt.plot(np.arange(0, N), H.history["loss"], label="train_loss")
plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss")
plt.plot(np.arange(0, N), H.history["accuracy"], label="train_acc")
plt.plot(np.arange(0, N), H.history["val_accuracy"], label="val_acc")
plt.title("Training Loss VS Accuracy")
plt.xlabel("no of epochs")
plt.ylabel("Loss & Accuracy")
plt.legend(loc="lower left")
plt.savefig("plot.png")