-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
64 lines (56 loc) · 2.39 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import cv2
import mediapipe as mp
import numpy as np
from gesture import recognize_gesture, mouse_move, scroll, right_click, left_click
mp_hands = mp.solutions.hands
mp_drawing = mp.solutions.drawing_utils
hands = mp_hands.Hands(min_detection_confidence=0.5, min_tracking_confidence=0.5)
prev_res = None
cap = cv2.VideoCapture(0)
while cap.isOpened():
if prev_res is not None and len(prev_res) >= 100:
prev_res = prev_res[-10:]
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
continue
# Flip the image horizontally for a later selfie-view display, and convert
# the BGR image to RGB.
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
image_height, image_width, _ = image.shape
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
results = hands.process(image)
if prev_res is None:
prev_res = [results]
elif results.multi_handedness is not None:
action = recognize_gesture(results)
if action is not None and len(prev_res) > 5:
# print('ACTION={}'.format(action))
prev_action = recognize_gesture(prev_res[-1])
prev_prev_action = recognize_gesture(prev_res[-2]) # to prevent triple clicking
if action == 'left_click' and prev_prev_action != 'left_click':
left_click()
elif action == 'right_click' and prev_action != 'right_click':
right_click()
elif action == 'mouse_move' and prev_action is not None:
mouse_move(results, prev_res, image_height, image_width)
elif action == 'scroll':
scroll(results, prev_res[-5])
prev_res.append(results)
# Draw the hand annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
image, hand_landmarks, mp_hands.HAND_CONNECTIONS)
resized_img = cv2.resize(image, (400, 200))
cv2.imshow('MediaPipe Hands (ESC or q to quit)', resized_img)
cv2.moveWindow('image', 400, 200)
if cv2.waitKey(5) & 0xFF == 27:
break
hands.close()
cap.release()