-
Notifications
You must be signed in to change notification settings - Fork 1
/
fieldvalue.go
394 lines (350 loc) · 11.6 KB
/
fieldvalue.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
package nmea
import (
"bytes"
"encoding/binary"
"encoding/hex"
"errors"
"fmt"
"math"
"time"
"unicode/utf16"
)
// https://www.nmea.org/Assets/2000-explained-white-paper.pdf Page 14
// Refers 3 special values "no data", "out of range" and "reserved"
// https://www.maretron.com/support/manuals/EMS100UM_1.1.html from `EMS100 Engine Monitoring System User's Manual`
// `Appendix A 'NMEA 2000' Interfacing`
// Quote "Note: For integer values, the most positive three values are reserved; e.g., for 8-bit unsigned integers,
// the values 0xFD, 0xFE, 0xFF are reserved, and for 8-bit signed integers, the values 0x7D, 0x7E, 0x7F are
// reserved. The most positive value (0xFF and 0x7F, respectively, for the 8-bit examples) represents
// Data Not Available."
var (
// ErrValueNoData indicates that field has no data (for example 8bits uint8=>0xFF, int8=>0x7F)
ErrValueNoData = errors.New("field value has no data")
// ErrValueOutOfRange indicates that field value is out of valid range (for example 8bits uint8=>0xFE, int8=>0x7E)
ErrValueOutOfRange = errors.New("field value out of range")
// ErrValueReserved indicates that field is reserved (for example 8bits uint8=>0xFD, int8=>0x7D)
ErrValueReserved = errors.New("field value is reserved")
)
var epoch = time.Unix(0, 0).UTC()
// FieldValues is slice of FieldValue
type FieldValues []FieldValue
// FieldValue hold extracted and processed value for PGN field
type FieldValue struct {
ID string `json:"id"`
// normalized to:
// * string,
// * float64,
// * int64,
// * uint64,
// * []byte,
// * time.Duration,
// * time.Time,
// * nmea.EnumValue,
// * [][]nmea.EnumValue <-- for repeating fieldsets/groups
Value interface{} `json:"value"`
}
// AsFloat64 converts value to float64 if it is possible.
func (f FieldValue) AsFloat64() (float64, bool) {
switch v := f.Value.(type) {
case float64:
return v, true
case int64:
return float64(v), true
case uint64:
return float64(v), true
case time.Duration:
return float64(v), true
case time.Time:
return float64(v.UnixNano()), true
case EnumValue:
return float64(v.Value), true
}
return 0, false
}
func (fvs FieldValues) FindByID(ID string) (FieldValue, bool) {
for _, f := range fvs {
if f.ID == ID {
return f, true
}
}
return FieldValue{}, false
}
type RawData []byte
func (d *RawData) DecodeBytes(bitOffset uint16, bitLength uint16, isVariableSize bool) ([]byte, uint16, error) {
rawData := []byte(*d)
endByteIndex := (bitOffset + bitLength - 1) / 8
if int(endByteIndex) > len(rawData)-1 {
if isVariableSize { // variable length caps bit length to packet end so we can read shorter data
endByteIndex = uint16(len(rawData) - 1)
bitLength -= (bitOffset + bitLength) - uint16(len(rawData)*8)
} else {
return nil, 0, fmt.Errorf("bitoffset is out of bounds of data")
}
}
length := (bitLength + 7) / 8
result := make([]byte, length)
startByteIndex := bitOffset / 8
startBitIndex := bitOffset % 8
if startByteIndex == endByteIndex { // single byte, everything starts and ends at the same byte
result[0] = rawData[startByteIndex] >> startBitIndex
if unnecessaryBits := bitLength % 8; unnecessaryBits != 0 {
result[0] &= 0xFF >> (8 - unnecessaryBits)
}
} else if startBitIndex != 0 { // multibyte, we need to sift bits to get rid of unneeded leading bits
maskLeading := uint8(0xFF >> startBitIndex)
result[0] = rawData[startByteIndex] >> startBitIndex
remainingBits := int(bitLength) - int(startBitIndex)
for i := uint16(1); i <= length; i++ {
current := rawData[startByteIndex+i]
leadingAsTrailing := (current & maskLeading) << startBitIndex
result[i-1] |= leadingAsTrailing
remainingBits -= 8
if remainingBits > 0 {
result[i] = current >> startBitIndex
}
}
} else { // multibyte, but starts exactly at byte border
copy(result, rawData[startByteIndex:endByteIndex+1])
unnecessaryBits := bitLength % 8
if unnecessaryBits != 0 {
result[len(result)-1] &= 0xFF >> (8 - unnecessaryBits)
}
}
return result, bitLength, nil
}
func (d *RawData) DecodeVariableUint(bitOffset uint16, bitLength uint16) (uint64, error) {
return d.decodeVariableInt(bitOffset, bitLength, false)
}
func (d *RawData) DecodeVariableInt(bitOffset uint16, bitLength uint16) (int64, error) {
variableUInt, err := d.decodeVariableInt(bitOffset, bitLength, true)
return int64(variableUInt), err
}
func (d *RawData) decodeVariableInt(bitOffset uint16, bitLength uint16, signed bool) (uint64, error) {
if bitLength > 64 {
return 0, fmt.Errorf("bit length larger than can be decoded")
}
startByteIndex := bitOffset / 8
endByteIndex := ((bitOffset + bitLength + 7) / 8) - 1
rawData := []byte(*d)
if int(endByteIndex) >= len(rawData) {
return 0, fmt.Errorf("bitoffset is out of bounds of data")
}
var result uint64
rawBytes := make([]byte, 8)
copy(rawBytes, rawData[startByteIndex:endByteIndex+1])
result = binary.LittleEndian.Uint64(rawBytes)
// in case we do not start of the byte then the rightmost bits are what interest us, and we clear leading bits off
result >>= bitOffset % 8
mask := (^uint64(0)) >> (64 - bitLength)
// in case we do not end exactly at the end of last byte, clear those bits at the end
result = result & mask
isNegative := false
if signed {
// we need to move current most significant bit as uint64 MSB so cast to int64 would have correct sign
isNegative = result&(1<<(bitLength-1)) != 0 // check if at current bit length MSB is set
mask = mask >> 1 // for special value checking
}
if bitLength >= 8 { // FIXME: I do not know if these special values (can) work with small bit lengths - does not make real sense
if result == mask {
return 0, ErrValueNoData
} else if result == (mask - 1) {
return 0, ErrValueOutOfRange
} else if result == (mask - 2) {
return 0, ErrValueReserved
}
}
if isNegative {
// negative numbers have all higher bits toggled
negativeMask := ^((^uint64(0)) >> (64 - bitLength))
result |= negativeMask
}
return result, nil
}
func (d *RawData) DecodeTime(bitOffset uint16, bitLength uint16, resolution float64) (time.Duration, error) {
// From Canboat: Absolute times in NMEA2000 are expressed as seconds since midnight(in an undefined timezone)
rawSeconds, err := d.DecodeVariableUint(bitOffset, bitLength)
if err != nil {
return 0, err
}
result := time.Duration(uint64(float64(rawSeconds)*resolution)) * time.Second
if resolution < 1 { // we need to extract decimal parts as smaller than seconds units
// 1 / resolution => 1 / 0.001 => 1 second is 1000 units (millisecond)
unitsInSecond := uint64(1 / resolution)
fraction := rawSeconds % unitsInSecond
// convert fraction to nanoseconds and then add to result
result += time.Duration((uint64(time.Second) / unitsInSecond) * fraction)
}
return result, nil
}
func (d *RawData) DecodeStringFix(bitOffset uint16, bitLength uint16) (string, error) {
rawBytes, _, err := d.DecodeBytes(bitOffset, bitLength, false)
if err != nil {
return "", err
}
length := 0
for length < len(rawBytes) {
b := rawBytes[length]
if b == 0xFF || b == 0x0 || b == '@' {
break
}
length++
}
if length == 0 {
return "", nil
} else if length == len(rawBytes) {
return string(rawBytes), nil
}
return string(rawBytes[0:length]), nil
}
func (d *RawData) DecodeStringLAU(bitOffset uint16) (string, uint16, error) {
headerBytes, _, err := d.DecodeBytes(bitOffset, 16, false)
if err != nil {
return "", 0, err
}
length := uint16(headerBytes[0])
if length == 2 {
return "", 16, nil
} else if length < 2 {
return "", 0, fmt.Errorf("string lau has invalid size below 2")
}
length -= 2 // remove length and encoding bytes size
encoding := headerBytes[1]
rawBytes, readBits, err := d.DecodeBytes(bitOffset+16, length*8, true)
if err != nil {
return "", 0, err
}
readBits += 16 // put len and encoding bits back to report correct read number
switch encoding {
case 0: // utf16
// Credits to: https://gist.github.com/juergenhoetzel/2d9447cdf5c5b30278adfa7e22ec660e
bom := [2]byte{rawBytes[0], rawBytes[1]}
var s string
switch bom {
case [2]byte{0xff, 0xfe}:
s, err = decodeUtf16(rawBytes[2:], binary.LittleEndian)
case [2]byte{0xfe, 0xff}:
s, err = decodeUtf16(rawBytes[2:], binary.BigEndian)
default:
s, err = decodeUtf16(rawBytes, binary.LittleEndian)
}
if err != nil {
return "", 0, err
}
return s, readBits, err
case 1: // utf8/ascii
// trim trailing 0x0 and 0xFF off. these mean "no data"
usableBytesLen := 0
for _, b := range rawBytes {
if b == 0 || b == 0xFF {
break
}
usableBytesLen++
}
if usableBytesLen != len(rawBytes) {
rawBytes = rawBytes[0:usableBytesLen]
}
return string(rawBytes), readBits, nil
default:
return "", 0, fmt.Errorf("invalid string lau encoding")
}
}
func decodeUtf16(b []byte, order binary.ByteOrder) (string, error) {
ints := make([]uint16, len(b)/2)
if err := binary.Read(bytes.NewReader(b), order, &ints); err != nil {
return "", fmt.Errorf("failed to decode utf16 string, err: %w", err)
}
return string(utf16.Decode(ints)), nil
}
func (d *RawData) DecodeStringLZ(bitOffset uint16, bitLength uint16) (string, uint16, error) {
rawData := []byte(*d)
lengthByteIndex := bitOffset / 8
actualLength := uint16(rawData[lengthByteIndex])
fieldLength := (bitLength + 7) / 8
if actualLength > fieldLength {
actualLength = fieldLength
} else if actualLength == 0 {
return "", 8, nil // empty string
}
rawBytes, readBits, err := d.DecodeBytes(bitOffset+8, actualLength*8, true)
if err != nil {
return "", 0, err
}
return string(rawBytes), readBits, nil
}
func (d *RawData) DecodeDate(bitOffset uint16, bitLength uint16) (time.Time, error) {
if bitLength != 16 {
return time.Time{}, fmt.Errorf("can only decode date with 16 bits")
}
rawBytes, _, err := d.DecodeBytes(bitOffset, bitLength, false)
if err != nil {
return time.Time{}, err
}
daysSinceEpoch := binary.LittleEndian.Uint16(rawBytes)
if daysSinceEpoch == math.MaxUint16 {
return time.Time{}, ErrValueNoData
} else if daysSinceEpoch == (math.MaxUint16 - 1) {
return time.Time{}, ErrValueOutOfRange
} else if daysSinceEpoch == (math.MaxUint16 - 2) {
return time.Time{}, ErrValueReserved
}
result := epoch.AddDate(0, 0, int(daysSinceEpoch))
return result, nil
}
func (d *RawData) DecodeDecimal(bitOffset uint16, bitLength uint16) (uint64, error) {
rawBytes, _, err := d.DecodeBytes(bitOffset, bitLength, false)
if err != nil {
return 0, err
}
result := uint64(0)
digits := uint64(1)
isNoData := true
for i := len(rawBytes) - 1; i >= 0; i-- {
b := rawBytes[i]
if b == 0xff {
continue
}
if b > 99 { // 100+ has 3 digits
return 0, fmt.Errorf("decimal contains byte with value larger than 2 digits")
}
isNoData = false
right := uint64(b % 10) // right side digit
left := uint64(b / 10) // left side digit
result += digits * right
digits *= 10
result += digits * left
digits *= 10
}
if isNoData {
return 0, ErrValueNoData
}
return result, nil
}
func (d *RawData) DecodeFloat(bitOffset uint16, bitLength uint16) (float64, error) {
if bitLength != 32 {
return 0.0, fmt.Errorf("can only decode float with 32 bits")
}
rawBytes, _, err := d.DecodeBytes(bitOffset, bitLength, false)
if err != nil {
return 0., err
}
asUint32 := binary.LittleEndian.Uint32(rawBytes)
frombits := math.Float32frombits(asUint32)
if asUint32 == math.MaxUint32 { // NaN as float32
return 0., ErrValueNoData
} else if asUint32 == (math.MaxUint32 - 1) { // NaN as float32
return 0., ErrValueOutOfRange
} else if asUint32 == (math.MaxUint32 - 2) {
return 0., ErrValueReserved
}
return float64(frombits), nil
}
func (d *RawData) AsHex() string {
if d == nil {
return ""
}
return hex.EncodeToString(*d)
}
type EnumValue struct {
Value uint32
Code string
}