-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmulti_insert_data.py
153 lines (125 loc) · 4.15 KB
/
multi_insert_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import argparse
from pathlib import Path
from sqlalchemy import text
from write_csv import weather_dataframe
from timer import Timer
from utils import get_sqlalchemy_engine, get_psycopg3_connection
def parse_args():
parser = argparse.ArgumentParser(
description="Load data into the weather table using multi-valued inserts."
)
parser.add_argument(
"--method",
choices=["pandas", "psycopg3", "sqlalchemy"],
help="How to insert rows into the table.",
required=True
)
parser.add_argument(
"--num-rows",
type=int,
help="Number of rows to insert.",
required=True
)
parser.add_argument(
"--table-type",
choices=["regular", "hyper"],
help="Create a regular PostgreSQL table or a TimescaleDB hypertable.",
required=True
)
parser.add_argument(
"--benchmarks-file",
type=str,
help="Filepath to output benchmarks to a CSV file.",
required=True
)
return parser.parse_args()
def log_benchmark(args, timer):
filepath = args.benchmarks_file
# Create file and write CSV header
if not Path(filepath).exists():
with open(filepath, "a") as file:
file.write("method,table_type,num_rows,seconds,rate,units\n")
with open(filepath, "a") as file:
file.write(
f"{args.method},{args.table_type},{args.num_rows},"
f"{timer.interval},{timer.rate},{timer.units}\n"
)
return
def batch_insert_data_using_psycopg3(df, timer, args):
with get_psycopg3_connection() as conn, conn.cursor() as cur, timer:
insert_query = """
insert into weather (
time,
location_id,
latitude,
longitude,
temperature_2m,
zonal_wind_10m,
meridional_wind_10m,
total_cloud_cover,
total_precipitation,
snowfall
) values (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)
"""
with Timer("Constructing data tuples"):
data_tuples = [tuple(row) for row in df.itertuples(index=False)]
# for row in df.itertuples(index=False):
# data_tuples.append(tuple(row))
cur.executemany(insert_query, data_tuples)
conn.commit()
return
def batch_insert_data_using_sqlalchemy(df, timer, args):
engine = get_sqlalchemy_engine()
with engine.connect() as conn, timer:
insert_query = """
insert into weather (
time,
location_id,
latitude,
longitude,
temperature_2m,
zonal_wind_10m,
meridional_wind_10m,
total_cloud_cover,
total_precipitation,
snowfall
) values (
:time,
:location_id,
:latitude,
:longitude,
:temperature_2m,
:zonal_wind_10m,
:meridional_wind_10m,
:total_cloud_cover,
:total_precipitation,
:snowfall
)
"""
with Timer("Constructing data dicts"):
data_dicts = df.to_dict("records")
conn.execute(text(insert_query), data_dicts)
return
def batch_insert_data_using_pandas(df, timer, args):
engine = get_sqlalchemy_engine()
with timer:
df.to_sql("weather", engine, if_exists="append", index=False, method="multi", chunksize=1000)
return
def main(args):
df = weather_dataframe(0)
df = df.head(args.num_rows)
timer = Timer(
f"Batch inserting data using {args.method}",
n=len(df.index),
units="inserts"
)
if args.method == "psycopg3":
batch_insert_data_using_psycopg3(df, timer, args)
elif args.method == "sqlalchemy":
batch_insert_data_using_sqlalchemy(df, timer, args)
elif args.method == "pandas":
batch_insert_data_using_pandas(df, timer, args)
log_benchmark(args, timer)
return
if __name__ == "__main__":
main(parse_args())