forked from niallmcl/Deep-Android-Malware-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
readMalwareData.lua
212 lines (172 loc) · 5.98 KB
/
readMalwareData.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
-- read the malware data
-- in setup mode
-- - read all the files
-- - decide if it should be in dataset
-- - save a list of all files
-- -
-- read the whole program into a tensor
function readfileFunc_tensor(filename)
local contents = {}
local f = torch.DiskFile(filename)
f.quiet(f)
local c = 'a'
local count = 0
local func = {}
for i = 1,opt.kernelLength do
table.insert(func,1)
count = count + 1
end
local nFuncs = 0
while c ~= '' do --and count <= opt.programLen do -- potential bug...
c = f.readString(f,'*l')
local len = #c
if len > 0 then
for k = 1,len,2 do
local num = string.sub(c,k,k+1)
local n = tonumber(num,16)
table.insert(func,n + 2) -- plus 2 so that our lowest symbol is '2' i.e. no_op is '2'
count = count + 1
end
nFuncs = nFuncs + 1
for i = 1,opt.kernelLength do
table.insert(func,1)
count = count + 1
end
if opt.markFunctionEnds then
table.insert(func,255) -- mark the end of each function
end
end
end
return torch.ByteTensor(func),nFuncs,count
end
-- get an upper bound on the number of malware files
-- we will discard some files that are too short etc
function upperBoundNumberOfFiles(rootDir)
local numberOfFilesBound = 0
local malwareDirs = paths.dir(rootDir)
for i = 1,#malwareDirs do
local dir = malwareDirs[i]
if dir ~= '.' and dir ~= '..' and paths.dirp(paths.concat(rootDir,dir)) then
local malwarefiles = paths.dir(paths.concat(rootDir,dir))
-- number of files minus '.' and '..'
numberOfFilesBound = numberOfFilesBound + #malwarefiles - 2
end
end
print('upper bound number of programs ',numberOfFilesBound)
return numberOfFilesBound
end
-- this function gets called once when processing a new dataset
-- we read all the programs and decide which ones should be included
-- we just use an arbitrary rule that excludes very short programs
-- the list of included programs is returned and saved for later use
function readMalwareData_setup(rootDir)
-- read all the directories
-- check each file to see if it meets some criterion
-- save list of filenames
-- split into train / test sets
local datasetInfo = {
filesList = {},
family = {},
familyName = {},
label = {},
benignFamily = -1,
}
local programCount = 0
local familyNumber = 1
local malwareDirs = paths.dir(rootDir)
for i = 1,#malwareDirs do
local dir = malwareDirs[i]
if dir ~= '.' and dir ~= '..' and paths.dirp(paths.concat(rootDir,dir)) then
local malwarefiles = paths.dir(paths.concat(rootDir,dir))
for f = 1,#malwarefiles do
local file = malwarefiles[f]
if file ~= '.' and file ~= '..' then
local contents,nFuncs = readfileFunc_tensor(paths.concat(rootDir,dir,malwarefiles[f]))
if nFuncs >= 8 then -- a bit arbitrary... basically we want to ignore very short files
programCount = programCount + 1
if programCount % 100 == 0 then
print('programs read ',programCount,collectgarbage("count"))
collectgarbage()
end
-- local includeFile = dir .. '/' .. malwarefiles[f]
table.insert(datasetInfo.filesList,malwarefiles[f])
table.insert(datasetInfo.family,familyNumber)
if dir == 'Benign' then
datasetInfo.benignFamily = familyNumber
table.insert(datasetInfo.label,1)
else
table.insert(datasetInfo.label,2)
end
end
end
end
familyNumber = familyNumber + 1
table.insert(datasetInfo.familyName,dir)
end
end
datasetInfo.family = torch.Tensor(datasetInfo.family)
datasetInfo.label = torch.Tensor(datasetInfo.label)
return datasetInfo
end
-- reads the malware data into a tensor
-- We read all the opcodes into a single block of memory
-- this is because each program can be a different length
-- so storing in a 2D array will waste lots space
-- We also can't use a Lua list as they are limited to 2GB
--
-- allData.program - tensor (i.e. 1D array of bytes) containing all opcodes
-- allData.programStartPtrs - pointers to start of each program in allData.program
-- allData.programLengths - the length of each opcode sequence
--
-- For example, to access program 3 do
--
-- local ptr = allData.programStartPrts[3]
-- local len = allData.programLengths[3]
-- local prog = allData.program[{{ptr,ptr + len - 1}}]
--
function readMalwareData(rootDir,metaData)
print('reading files with version 2')
local malwareDirs = paths.dir(rootDir)
local upperBoundNumFiles = upperBoundNumberOfFiles(rootDir)
local meanProgramLen = 50000
local allData = {
program = torch.ones(upperBoundNumFiles * meanProgramLen):byte(),
programStartPtrs = {},
programLengths = {},
}
local programLen = {}
local progPtr = 1
local programCount = 0
for i = 1,#metaData.filesList do
local file = metaData.filesList[i]
local familyDir = metaData.familyName[metaData.family[i]]
local fullFile = paths.concat(rootDir,familyDir,file)
if paths.filep(fullFile) then
local contents = readfileFunc_tensor(fullFile)
programCount = programCount + 1
if programCount % 100 == 0 then
print('programs read ',programCount,collectgarbage("count"))
collectgarbage()
end
local programLength = contents:size(1)
-- if needed - increase the size of the storage
if (progPtr + programLength - 1) > allData.program:size(1) then
local currSize = allData.program:size(1)
allData.program = allData.program:resize(currSize * 1.05)
end
table.insert(allData.programStartPtrs,progPtr)
table.insert(allData.programLengths,programLength)
-- insert the program into the memory
allData.program[{{progPtr,progPtr + programLength - 1}}] = contents
progPtr = progPtr + programLength
else
-- we should stop if this happens!
error('ERROR : Missing file in dataset : ' .. fullFile)
end
end
allData.program = allData.program:resize(progPtr) -- discard redundant rows
allData.programStartPtrs = torch.Tensor(allData.programStartPtrs)
allData.programLengths = torch.Tensor(allData.programLengths)
allData.label = metaData.label
return allData,programLen
end