forked from vir/yate-g72X-ipp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvadg729fp.c
320 lines (278 loc) · 12.1 KB
/
vadg729fp.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
/*/////////////////////////////////////////////////////////////////////////////
//
// INTEL CORPORATION PROPRIETARY INFORMATION
// This software is supplied under the terms of a license agreement or
// nondisclosure agreement with Intel Corporation and may not be copied
// or disclosed except in accordance with the terms of that agreement.
// Copyright(c) 2005-2008 Intel Corporation. All Rights Reserved.
//
// Intel(R) Integrated Performance Primitives
// USC - Unified Speech Codec interface library
//
// By downloading and installing USC codec, you hereby agree that the
// accompanying Materials are being provided to you under the terms and
// conditions of the End User License Agreement for the Intel(R) Integrated
// Performance Primitives product previously accepted by you. Please refer
// to the file ippEULA.rtf or ippEULA.txt located in the root directory of your Intel(R) IPP
// product installation for more information.
//
// A speech coding standards promoted by ITU, ETSI, 3GPP and other
// organizations. Implementations of these standards, or the standard enabled
// platforms may require licenses from various entities, including
// Intel Corporation.
//
//
// Purpose: G.729 float VAD functions.
//
*/
#ifndef IPP_7
#include <ippsr.h>
#endif
#include <math.h>
#include "vadg729fp.h"
static __ALIGN32 CONST Ipp32f a[14] = {
1.750000e-03f, -4.545455e-03f, -2.500000e+01f, 2.000000e+01f,
0.000000e+00f, 8.800000e+03f, 0.000000e+00f, 2.5e+01f,
-2.909091e+01f, 0.000000e+00f, 1.400000e+04f, 0.928571f,
-1.500000e+00f, 0.714285f
};
static __ALIGN32 CONST Ipp32f b[14] = {
0.00085f, 0.001159091f, -5.0f, -6.0f, -4.7f, -12.2f, 0.0009f,
-7.0f, -4.8182f, -5.3f, -15.5f, 1.14285f, -9.0f, -2.1428571f
};
static Ipp32s MakeDecision(Ipp32f fLowBandEnergyDiff, Ipp32f fFullBandEnergyDiff, Ipp32f fSpectralDistortion, Ipp32f fZeroCrossingDiff)
{
/* The spectral distortion vs zero-crossing difference */
if (fSpectralDistortion > a[0]*fZeroCrossingDiff+b[0]) {
return(VAD_VOICE);
}
if (fSpectralDistortion > a[1]*fZeroCrossingDiff+b[1]) {
return(VAD_VOICE);
}
/* full-band energy difference vs zero-crossing difference */
if (fFullBandEnergyDiff < a[2]*fZeroCrossingDiff+b[2]) {
return(VAD_VOICE);
}
if (fFullBandEnergyDiff < a[3]*fZeroCrossingDiff+b[3]) {
return(VAD_VOICE);
}
if (fFullBandEnergyDiff < b[4]) {
return(VAD_VOICE);
}
/* full-band energy difference vs the spectral distortion */
if (fFullBandEnergyDiff < a[5]*fSpectralDistortion+b[5]) {
return(VAD_VOICE);
}
if (fSpectralDistortion > b[6]) {
return(VAD_VOICE);
}
/* full-band energy difference vs zero-crossing difference */
if (fFullBandEnergyDiff < a[7]*fZeroCrossingDiff+b[7]) {
return(VAD_VOICE);
}
if (fFullBandEnergyDiff < a[8]*fZeroCrossingDiff+b[8]) {
return(VAD_VOICE);
}
if (fFullBandEnergyDiff < b[9]) {
return(VAD_VOICE);
}
/* low-band energy difference vs the spectral distortion */
if (fLowBandEnergyDiff < a[10]*fSpectralDistortion+b[10]) {
return(VAD_VOICE);
}
/* low-band energy difference vs full-band eneggy difference */
if (fLowBandEnergyDiff > a[11]*fFullBandEnergyDiff+b[11]) {
return(VAD_VOICE);
}
if (fLowBandEnergyDiff < a[12]*fFullBandEnergyDiff+b[12]) {
return(VAD_VOICE);
}
if (fLowBandEnergyDiff < a[13]*fFullBandEnergyDiff+b[13]) {
return(VAD_VOICE);
}
return(VAD_NOISE);
}
void VADInit(Ipp8s *pVADmem)
{
VADmemory *vadState = (VADmemory *)pVADmem;
ippsZero_16s((Ipp16s*)vadState,sizeof(VADmemory)>>1) ;
ippsZero_32f(vadState->MeanLSFVec, LPC_ORDER);
vadState->fMeanFullBandEnergy = 0.0f;
vadState->fMeanLowBandEnergy = 0.0f;
vadState->fMeanEnergy = 0.0f;
vadState->fMeanZeroCrossing = 0.0f;
vadState->lSilenceCounter = 0;
vadState->lUpdateCounter = 0;
vadState->lSmoothingCounter = 0;
vadState->lLessEnergyCounter = 0;
vadState->lFVD = 1;
vadState->fMinEnergy = IPP_MAXABS_32F;
return;
}
void VADGetSize(Ipp32s *pDstSize)
{
*pDstSize = sizeof(VADmemory);
return;
}
static __ALIGN32 CONST Ipp32f ToplAutoCorrMtr[LPC_ORDERP2+1]={
0.120089698456645f, 0.21398822343783f, 0.14767692339633f,
0.07018811903116f, 0.00980856433051f, -0.02015934721195f,
-0.02388269958005f, -0.01480076155002f, -0.00503292155509f,
0.00012141366508f, 0.00119354245231f, 0.00065908718613f,
0.00015015782285f
};
void VoiceActivityDetect_G729_32f(Ipp32f ReflectCoeff, Ipp32f *pLSF, Ipp32f *pAutoCorr, Ipp32f *pSrc, Ipp32s FrameCounter,
Ipp32s prevDecision, Ipp32s prevPrevDecision, Ipp32s *pVad, Ipp32f *pEnergydB,Ipp8s *pVADmem,Ipp32f *pExtBuff)
{
Ipp32f *pTmp;
Ipp32f fSpectralDistortion, fFullBandEnergyDiff, fLowBandEnergyDiff, lNumZeroCrossing, fZeroCrossingDiff;
Ipp32f fLowBandEnergy;
Ipp32f fFullBandEnergy;
Ipp32f zeroNum;
Ipp32s i;
static __ALIGN32 CONST Ipp32f vadTable[7][6]={
/* coeff C_coeff coeffZC C_coeffZC coeffSD C_coeffSD */
{ 0.75f, 0.25f, 0.8f, 0.2f, 0.6f, 0.4f},
{ 0.75f, 0.25f, 0.8f, 0.2f, 0.6f, 0.4f},
{ 0.95f, 0.05f, 0.92f, 0.08f, 0.65f, 0.35f},
{ 0.97f, 0.03f, 0.94f, 0.06f, 0.70f, 0.3f},
{ 0.99f, 0.01f, 0.96f, 0.04f, 0.75f, 0.25f},
{0.995f, 0.005f, 0.99f, 0.01f, 0.75f, 0.25f},
{0.995f, 0.005f, 0.998f, 0.002f, 0.75f, 0.25f},
};
const Ipp32f *pVadTable;
VADmemory *vadState = (VADmemory *)pVADmem;
pTmp = &pExtBuff[0]; /*10 elements*/
/* compute the frame energy, full-band energy */
fFullBandEnergy = 10.0f * (Ipp32f) log10( pAutoCorr[0]/240.0f + IPP_MINABS_32F);
*pEnergydB = fFullBandEnergy ;
/* compute the low-band energy (El)*/
ippsDotProd_32f(pAutoCorr, ToplAutoCorrMtr, LPC_ORDERP2+1, &fLowBandEnergy);
if (fLowBandEnergy < 0.0f) fLowBandEnergy = 0.0f;
fLowBandEnergy= 10.0f * (Ipp32f) log10((Ipp32f) (fLowBandEnergy/120.0f + IPP_MINABS_32F));
/* Normalize line spectral frequences */
for(i=0; i<LPC_ORDER; i++) pLSF[i] /= (Ipp32f)IPP_2PI;
/* compute spectral distortion */
ippsSub_32f(pLSF, vadState->MeanLSFVec, pTmp, LPC_ORDER);
ippsDotProd_32f(pTmp, pTmp, LPC_ORDER, &fSpectralDistortion);
/* compute # zero crossing */
#ifdef IPP_7
ippsZeroCrossing_32f(&pSrc[ZC_START_INDEX], ZC_END_INDEX+1-ZC_START_INDEX, &zeroNum, ippZCR);
#else
ippsSignChangeRate_32f(&pSrc[ZC_START_INDEX], ZC_END_INDEX+1-ZC_START_INDEX, &zeroNum);
#endif
lNumZeroCrossing = zeroNum/80;
/* Initialize and update min energies */
if( FrameCounter < 129 ) {
if( fFullBandEnergy < vadState->fMinEnergy ){
vadState->fMinEnergy = fFullBandEnergy;
vadState->fPrevMinEnergy = fFullBandEnergy;
}
if( (FrameCounter % 8) == 0){
vadState->MinimumBuff[FrameCounter/8 -1] = vadState->fMinEnergy;
vadState->fMinEnergy = IPP_MAXABS_32F;
}
}
if( (FrameCounter % 8) == 0){
ippsMin_32f(vadState->MinimumBuff,15,&vadState->fPrevMinEnergy);
}
if( FrameCounter >= 129 ) {
if( (FrameCounter % 8 ) == 1) {
vadState->fMinEnergy = vadState->fPrevMinEnergy;
vadState->fNextMinEnergy = IPP_MAXABS_32F;
}
if( fFullBandEnergy < vadState->fMinEnergy )
vadState->fMinEnergy = fFullBandEnergy;
if( fFullBandEnergy < vadState->fNextMinEnergy )
vadState->fNextMinEnergy = fFullBandEnergy;
if( (FrameCounter % 8) == 0){
for ( i =0; i< 15; i++)
vadState->MinimumBuff[i] = vadState->MinimumBuff[i+1];
vadState->MinimumBuff[15] = vadState->fNextMinEnergy;
ippsMin_32f(vadState->MinimumBuff,16,&vadState->fPrevMinEnergy);
}
}
if (FrameCounter <= END_OF_INIT){
if( fFullBandEnergy < 21.0f){
vadState->lLessEnergyCounter++;
*pVad = VAD_NOISE;
}
else{
*pVad = VAD_VOICE;
vadState->fMeanEnergy = (vadState->fMeanEnergy*( (Ipp32f)(FrameCounter-vadState->lLessEnergyCounter -1)) +
fFullBandEnergy)/(Ipp32f) (FrameCounter-vadState->lLessEnergyCounter);
vadState->fMeanZeroCrossing = (vadState->fMeanZeroCrossing*( (Ipp32f)(FrameCounter-vadState->lLessEnergyCounter -1)) +
lNumZeroCrossing)/(Ipp32f) (FrameCounter-vadState->lLessEnergyCounter);
ippsInterpolateC_G729_32f(vadState->MeanLSFVec, (Ipp32f)(FrameCounter-vadState->lLessEnergyCounter -1),
pLSF, 1.0f, vadState->MeanLSFVec, LPC_ORDER);
ippsMulC_32f_I(1.0f/(Ipp32f) (FrameCounter-vadState->lLessEnergyCounter ), vadState->MeanLSFVec, LPC_ORDER);
}
}
if (FrameCounter >= END_OF_INIT ){
if (FrameCounter == END_OF_INIT ){
vadState->fMeanFullBandEnergy = vadState->fMeanEnergy - 10.0f;
vadState->fMeanLowBandEnergy = vadState->fMeanEnergy - 12.0f;
}
fFullBandEnergyDiff = vadState->fMeanFullBandEnergy - fFullBandEnergy;
fLowBandEnergyDiff = vadState->fMeanLowBandEnergy - fLowBandEnergy;
fZeroCrossingDiff = vadState->fMeanZeroCrossing - lNumZeroCrossing;
if( fFullBandEnergy < 21.0f ){
*pVad = VAD_NOISE;
}
else{
*pVad =MakeDecision(fLowBandEnergyDiff, fFullBandEnergyDiff, fSpectralDistortion, fZeroCrossingDiff );
}
vadState->lVADFlag =VAD_NOISE;
if( (prevDecision == VAD_VOICE) && (*pVad == VAD_NOISE) &&
(fFullBandEnergy > vadState->fMeanFullBandEnergy + 2.0f) && ( fFullBandEnergy > 21.0f)){
*pVad = VAD_VOICE;
vadState->lVADFlag=VAD_VOICE;
}
if((vadState->lFVD == 1) ){
if( (prevPrevDecision == VAD_VOICE) && (prevDecision == VAD_VOICE) &&
(*pVad == VAD_NOISE) && (fabs(vadState->fPrevEnergy - fFullBandEnergy)<= 3.0f)){
vadState->lSmoothingCounter++;
*pVad = VAD_VOICE;
vadState->lVADFlag=VAD_VOICE;
if(vadState->lSmoothingCounter <=4)
vadState->lFVD =1;
else{
vadState->lFVD =0;
vadState->lSmoothingCounter=0;
}
}
}
else
vadState->lFVD =1;
if(*pVad == VAD_NOISE)
vadState->lSilenceCounter++;
if((*pVad == VAD_VOICE) && (vadState->lSilenceCounter > 10) &&
((fFullBandEnergy - vadState->fPrevEnergy) <= 3.0f)){
*pVad = VAD_NOISE;
vadState->lSilenceCounter=0;
}
if(*pVad == VAD_VOICE)
vadState->lSilenceCounter=0;
if ((fFullBandEnergy < vadState->fMeanFullBandEnergy + 3.0f) && ( FrameCounter >128)
&&( !vadState->lVADFlag) && (ReflectCoeff < 0.6f) )
*pVad = VAD_NOISE;
if ((fFullBandEnergy < vadState->fMeanFullBandEnergy + 3.0f) && (ReflectCoeff < 0.75f) && ( fSpectralDistortion < 0.002532959f)){
vadState->lUpdateCounter++;
i = vadState->lUpdateCounter/10;
if(i>6) i=6;
pVadTable = vadTable[i];
ippsInterpolateC_G729_32f(vadState->MeanLSFVec, pVadTable[4],
pLSF, (pVadTable[5]), vadState->MeanLSFVec, LPC_ORDER);
vadState->fMeanFullBandEnergy = pVadTable[0]*vadState->fMeanFullBandEnergy+(pVadTable[1])*fFullBandEnergy;
vadState->fMeanLowBandEnergy = pVadTable[0]*vadState->fMeanLowBandEnergy+(pVadTable[1])*fLowBandEnergy;
vadState->fMeanZeroCrossing = pVadTable[2]*vadState->fMeanZeroCrossing+(pVadTable[3])*lNumZeroCrossing;
}
if((FrameCounter > 128) && ( ( vadState->fMeanFullBandEnergy < vadState->fMinEnergy )
&& ( fSpectralDistortion < 0.002532959f)) || ( vadState->fMeanFullBandEnergy > vadState->fMinEnergy + 10.0f )){
vadState->fMeanFullBandEnergy = vadState->fMinEnergy;
vadState->lUpdateCounter = 0;
}
}
vadState->fPrevEnergy = fFullBandEnergy;
return;
}