-
Notifications
You must be signed in to change notification settings - Fork 344
/
Copy pathFractional_Knapsack.cpp
51 lines (43 loc) · 1.1 KB
/
Fractional_Knapsack.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#include<bits/stdc++.h>
using namespace std;
struct Item{
int val;
int w;
};
bool cmp(Item i1,Item i2){
double r1= (double)i1.val/i1.w;
double r2=(double)i2.val/i2.w;
return r1>r2;
}
int fractionalKnapsack(Item items[],int n,int W){
sort(items,items+n,cmp);
int rem=W;
double ans=0;
for(int i=0;i<n;i++){
if(items[i].w<=rem){
ans+= items[i].val;
rem-=items[i].w;
}
else{
ans+= (double)(rem* items[i].val)/(double)items[i].w;
rem=0;break;
}
}
return ans;
}
// Since the name is knapsack, we may think that it is a DP problem,
// but with some observation it can be noted that it is actually a greedy problem
// where we choose the item with the highest ratio of item:weight or we choose the most valuable item
int main(){
int W = 50;
int value[]={60,100,120};
int wt[]={10,20,30};
int n=3;
Item items[n];
for(int i=0;i<n;i++){
items[i].val=value[i];
items[i].w=wt[i];
}
int ans= fractionalKnapsack(items,n,W);
cout<<"Maximum Value : "<<ans;
}