-
Notifications
You must be signed in to change notification settings - Fork 0
/
presentation.tex
674 lines (493 loc) · 18.7 KB
/
presentation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
\documentclass[aspectratio=169]{beamer}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{multirow}
\usepackage{lipsum}% http://ctan.org/pkg/lipsum
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{fancyhdr}
\usepackage{hyperref}
%\usepackage{siunitx}
\usepackage{booktabs}
\usepackage{xcolor}
\usepackage{afterpage}
\usepackage{physics}
\usepackage{siunitx}[=v2]
\usepackage{nicefrac}
\usepackage{blindtext}
\usepackage{cuted}
\usepackage{flushend}
\usepackage{subcaption}
%\colorlet{rorange}{orange!70!black}
\definecolor{rorange}{RGB}{223,107,85}
\definecolor{rblue}{RGB}{114,177,236}
\usepackage[T1]{fontenc}
%\usepackage[onehalfspacing]{setspace}
%\usepackage[superscript,biblabel]{cite}
%\makeatletter \renewcommand{\@citess}[1]{\textsuperscript{\,[#1]}} \makeatother
% ##################################################
% BIBLIOGRAPHY
% ##################################################
\usepackage{csquotes}
\usepackage[backend=biber,bibstyle=ieee, citestyle=numeric-comp]{biblatex}
\addbibresource{./BA.bib}
\addbibresource{SHIP-proposal.bib}
\addbibresource{ZINTH.bib}
\addbibresource{SPECTRAL-SEMICONDUCTOR.bib}
\setlength\bibitemsep{.5\baselineskip}
\setcounter{biburlnumpenalty}{9000} % break URLs on numbers
\setcounter{biburllcpenalty}{9000} % break URLs on lower case letters
\setcounter{biburlucpenalty}{9000} % break URLs on upper case letters
\usetheme{Darmstadt}
\usecolortheme{dove}
\DeclareSIUnit\eVperc{\eV\per\clight\squared}
\DeclareSIUnit\clight{\text{\ensuremath{c}}}
%\usepackage{caption}
%\captionsetup[figure]{font=footnotesize}
\setbeamertemplate{caption}{\insertcaption}
\setbeamerfont{caption}{family=\sffamily, size={\fontsize{6}{6}}}
\setbeamercolor{caption}{fg=gray}
\setbeamercolor{caption name}{fg=gray}
\title{\textbf{Study of the position-dependent detector response of a liquid scintillator detector instrumented with WOMs and SiPMs using cosmic muons}}
\author{Andrea Ernst}
\institute{Bachelor's Thesis, Department of Physics, Humboldt-Universität zu Berlin}
\date{11. November 2021}
\setbeamertemplate{itemize items}{--}
\setbeamercolor{itemize item}{fg=rorange}
\setbeamertemplate{enumerate items}[default]
\setbeamercolor{enumerate items}{fg=rorange}
\captionsetup{labelformat=empty,labelsep=none}
\setbeamertemplate{section in toc}{%
{\color{rorange}\inserttocsectionnumber.}~\inserttocsection}
\setbeamercolor{subsection in toc}{bg=white,fg=structure}
\setbeamertemplate{subsection in toc}{%
\hspace{1.2em}{\color{rorange}\rule[0.3ex]{3pt}{3pt}}~\inserttocsubsection\par}
\setbeamertemplate{bibliography item}[text]
\setbeamertemplate{bibliography entry article}{}
\setbeamertemplate{bibliography entry title}{}
\setbeamertemplate{bibliography entry location}{}
\setbeamertemplate{bibliography entry note}{}
\setbeamerfont{bibliography item}{size={\fontsize{6}{6}}}
\setbeamerfont{bibliography entry author}{size={\fontsize{6}{6}}}
\setbeamerfont{bibliography entry title}{size={\fontsize{6}{6}}}
\setbeamerfont{bibliography entry location}{size={\fontsize{6}{6}}}
\setbeamerfont{bibliography entry note}{size={\fontsize{6}{6}}}
\setbeamertemplate{footline}{%
\leavevmode%
\hbox{%
\begin{beamercolorbox}[wd=.25\paperwidth,ht=2.25ex,dp=1ex,center]{author in head/foot}%
\usebeamerfont{author in head/foot}{\color{gray}\insertshortauthor~~}%(\insertshortinstitute)
\end{beamercolorbox}%
\begin{beamercolorbox}[wd=.65\paperwidth,ht=2.25ex,dp=1ex,right]{title in head/foot}%
\usebeamerfont{title in head/foot}
\color{gray}\insertframenumber/\inserttotalframenumber{} \hspace*{2ex}
\end{beamercolorbox}%
%\begin{beamercolorbox}[wd=.25\paperwidth,ht=2.25ex,dp=1ex,right]{date in head/foot}%
%\insertframenumber{} \hspace*{2ex}
%\end{beamercolorbox}
}%
\vskip0pt%
}
\begin{document}
\begin{frame}[plain]
\maketitle
\end{frame}
\begin{frame}{Overview}
\tableofcontents
\end{frame}
%------- SHiP -------%
\section{SHiP}
\begin{frame}{Search for Hidden Particles (SHiP)}
\begin{figure}
\centering
\includegraphics[width=.8\textwidth]{pictures/ship-facility.pdf}
\caption{Cr.: SHiP Collaboration \cite{SHIP-DESIGN-2019}.}
\end{figure}
\begin{itemize}
\item 'intensity frontier' experiment to be built at CERN SPS
\item \SI{400}{\giga\electronvolt} proton beam-dump
\item looking for long-lived exotic particles, $m < \order{10}\SI{}{\giga\eVperc}$
\end{itemize}
\end{frame}
\begin{frame}{}
\begin{figure}
\centering
\includegraphics[width=.8\textwidth]{pictures/ship-facility.pdf}
\caption{Cr.: SHiP Collaboration \cite{SHIP-DESIGN-2019}.}
\end{figure}
\begin{itemize}
\item target $\rightarrow$ muon shield $\rightarrow$ Scattering and Neutrino Detector
\item decay volume $\rightarrow$ Hidden Sector decay spectrometer
\item intensity frontier $\Rightarrow$ need precise background suppression
\end{itemize}
\end{frame}
\begin{frame}{Surround Background Tagger (SBT)}
\begin{figure}
\centering
\includegraphics[width=.7\textwidth]{pictures/decay_volume.pdf}
\caption{Cr.: Miano et al \cite{MIANO}.}
\end{figure}
\vspace{-.5cm}
\begin{itemize}
\item structure surrounds evacuated decay vessel
\item requirements:
\begin{itemize}
\item full coverage of surrounding area
\item high detection efficiency of charged particles (muons)
\end{itemize}
$\Rightarrow$ liquid scintillator (LS) LAB + PPO chosen
\item SBT made up of $\order{2000}$ detector 'cells'
\end{itemize}
\end{frame}
%------- SBT cell prototype -------%
\section{SBT Cell Prototype}
%------- WOM -------%
\begin{frame}{Wavelength-shifting Optical Module (WOM)}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{pictures/absorption-emission.png}
\caption{Adapted from \cite{ZIMMERMANN}.}
\end{figure}
\end{column}
\begin{column}{0.5\textwidth}
\begin{itemize}
\item emission maximum of LS around 350 to \SI{400}{\nano\meter} $\rightarrow$ not easily detectable
\item use wavelength-shifting paint on WOM $\rightarrow$ paint absorbs LS photons, re-emits in visible spectrum
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Wavelength-shifting Optical Module (WOM)}
\vspace{-1cm}
\begin{columns}
\begin{column}{0.3\textwidth}
\begin{itemize}
\item LS light enters PMMA tube $\rightarrow$ gets wavelength-shifted $\rightarrow$ shifted light travels in tube (total reflection)
\item pro: high surface area $\rightarrow$ gathers a lot of light from LS
\item con: path of light to end of tube can be arbitrarily complex
\end{itemize}
\end{column}
\begin{column}{0.7\textwidth}
\begin{figure}
\centering
\includegraphics[width=.9\textwidth]{pictures/wom-principle.pdf}
\caption{Adapted from \cite{ZIMMERMANN}.}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{SBT Cell Prototype}
\vspace{-1cm}
\begin{columns}
\begin{column}{0.4\textwidth}
\begin{figure}
\centering
\includegraphics[width=.8\textwidth]{pictures/WOM_Vessel_TB18_top.jpeg}
\caption{Cr.: DESY.}
\end{figure}
\end{column}
\begin{column}{0.7\textwidth}
\begin{figure}
\centering
\includegraphics[width=.6\textwidth]{pictures/sipm-array.pdf}
\end{figure}
\begin{itemize}
\item WOM optically coupled to circular array of 40 SiPMs
\item SiPMs mounted on PCB, PCB connected to eMUSIC board $\rightarrow$ 40 signals gathered in 8 analog channels
\item eMUSIC board connected to WaveCatcher (A-to-D converter)
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{SBT Cell Prototype}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{itemize}
\item WOM and LS contained in $\SI{50.4 x 50.4 x 25}{\centi\meter}$ steel box
\item SiPM array and electronics covered to prevent light leakage
\item two sets of plastic scintillators + PMTs used to trigger on cosmic muons
\end{itemize}
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{pictures/cosmics-photo.pdf}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Position-dependent Detector Response}
\centering
\includegraphics[width=.8\textwidth]{pictures/cosmics.pdf}
\begin{columns}
\begin{column}{.5\textwidth}
\centering
\includegraphics[width=1\textwidth]{pictures/detector-response.pdf}
\end{column}
\begin{column}{.5\textwidth}
\begin{itemize}
\item muon generates scintillation light in LS box
\item light gets collected, shifted by WOM $\rightarrow$ travels to SiPM array
\item goal: study SiPM signal in relation to muon incidence location
\end{itemize}
\end{column}
\end{columns}
\end{frame}
%------- CCD vs. TES -------%
\section{Data Analysis and Results}
\begin{frame}{SiPM Signal}
\vspace{-1cm}
\begin{columns}
\begin{column}{.5\textwidth}
\centering
\includegraphics[width=1\textwidth]{pictures/integration-window.pdf}
Light yield:
\begin{equation*}
J = \int_{\Delta t} U(t) \,dt
\end{equation*}
\end{column}
\begin{column}{.5\textwidth}
\centering
\includegraphics[width=.6\textwidth]{pictures/waveform-sipm.pdf}
\begin{itemize}
\item WaveCatcher records \SI{320}{\nano\second} voltage waveform per event and channel group
\item 'main signal' integrated using RootReader software \cite{ROOTREADER} $\rightarrow$ light yield measure for amount of light collected per channel
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Muon Incidence Location}
\begin{columns}
\begin{column}{.5\textwidth}
\centering
\includegraphics[width=.7\textwidth]{pictures/positional.pdf}
\includegraphics[width=.5\textwidth]{pictures/locations_cosmics.pdf}
\end{column}
\begin{column}{.5\textwidth}
\begin{itemize}
\item muon location can be determined using speed of light inside plastic scintillators $c_{PS}$
\end{itemize}
\begin{equation*}
X_{bot} = \frac{1}{2} \cdot c_{PS} \cdot (t_4 - t_3) = \frac{1}{2} \cdot c_{PS} \cdot \Delta t_{43}
\end{equation*}
\begin{itemize}
\item same for $X_{top}$ $\rightarrow$ can filter $\Delta t$ to set location
\item compare detector signals for 9 positions
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Event-dependent Mean Angle $\phi_{ew}$}
\begin{columns}
\begin{column}{.5\textwidth}
\centering
\includegraphics[width=.5\textwidth]{pictures/phi_channel.pdf}
\begin{gather}
\begin{align*}
x_{i}& = \cos(\varphi_{i}) \cdot J_{i}
& y_{i} &= \sin(\varphi_{i}) \cdot J_{i}\\
X &= \sum_{i=0}^{7} x_{i}
& Y &= \sum_{i=0}^{7} y_{i}\\
\end{align*}
\end{gather}
\end{column}
\begin{column}{.5\textwidth}
\vspace{-1cm}
\begin{itemize}
\item assign angle $\varphi_{i}$ to each channel i
\item average all angles $\varphi_{i}$ weighted by light yield in respective channel $J_i$ $\rightarrow$ use vectorial addition to not introduce false values
\item convert averaged vector back to polar angle $\phi_{ew}$, project on $\left[-\ang{180},\ang{180}\right]$ interval
\end{itemize}
% \vspace{-.1cm}
\begin{align*}
\label{eq:phiew}
\phi_{ew} = \arctan\qty(\frac{Y}{X})
\end{align*}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Position-dependent Mean angle $\overline{\Phi_{ew}}$}
\begin{columns}
\begin{column}{.4\textwidth}
% \centering
\includegraphics[width=1.1\textwidth]{pictures/phi_ew_R0.pdf}
\end{column}
\begin{column}{.6\textwidth}
\centering
% \includegraphics[width=.9\textwidth]{pictures/phi_ew_R0_shift.pdf}
\begin{itemize}
\item sample $\phi_{ew}$ distribution for position R-0
\item barring shift of mean, similar for all positions except C-0
\item fit Gaussian to determine position-dependent mean angle $\overline{\Phi_{ew}}$
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Position-dependent Mean angle $\overline{\Phi_{ew}}$}
\begin{columns}
\begin{column}{0.4\textwidth}
\centering
\includegraphics[width=.7\textwidth]{pictures/relative-locations.pdf}
\begin{itemize}
\item assign angle $\alpha$ to each muon incidence location
\item $\alpha \in \left[-\ang{180},\ang{180}\right]$, so that $\alpha = 0$ corresponds to channel 0
\end{itemize}
\end{column}
\begin{column}{0.6\textwidth}
\includegraphics[width=\textwidth]{pictures/phi-ew-std-sep.pdf}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Comparison to TestBeam 2019 Results}
\vspace{-.7cm}
\begin{columns}
\begin{column}{0.5\textwidth}
\centering
\begin{figure}
\caption{Cr.: Joscha Hanel \cite{HANEL}.}
\vspace{-.2cm}
\includegraphics[width=.9\textwidth]{pictures/hanel_phi-ew.pdf}
\includegraphics[width=.9\textwidth]{pictures/hanel_phi-std.pdf}
\end{figure}
\vspace{-.2cm}
\begin{itemize}
\item $\Delta \phi_{beam} = \ang{90} \rightarrow \Delta \overline{\Phi_{ew}} = \ang{45}$
\end{itemize}
\end{column}
\begin{column}{0.5\textwidth}
\centering
% \vspace{-.5cm}
\includegraphics[width=1.1\textwidth]{pictures/phi-ew-std-sep.pdf}
\begin{itemize}
\item $\Delta \alpha = \ang{90} \rightarrow \Delta \overline{\Phi_{ew}} = \ang{28}, \ang{74}, \ang{9}, \ang{54}$
\end{itemize}
\end{column}
\end{columns}
\centering
\vspace{.1cm}
Standard deviations similar for both, $\overline{\Phi_{ew}}$ overlap with standard deviations
\end{frame}
\begin{frame}{Central Position C-0}
\begin{columns}
\begin{column}{0,5\textwidth}
\centering
\begin{itemize}
\item with ideal optical coupling between WOM and SiPMs, expect uniform $\phi_{ew}$ distribution for C-0 $\rightarrow$ could use this to study coupling in future
\end{itemize}
\end{column}
\begin{column}{0,5\textwidth}
\begin{figure}
\includegraphics[width=\textwidth]{pictures/phi-ew-c0-fit.pdf}
\end{figure}
\end{column}
\end{columns}
$\rightarrow$ not uniform! values distributed around ch. 0 \linebreak
$\rightarrow$ in line with distribution of $\overline{\Phi_{ew}}$ also close to ch. 0 \linebreak
$\Rightarrow$ optical coupling not ideal
\end{frame}
% --- Outlook ----
\section{Summary and Outlook}
\begin{frame}{Summary and Outlook}
\begin{columns}[t]
\begin{column}{.5\textwidth}
\centering
\textit{can} resolve muon incidence position from SiPM signal to about $\ang{90}$ for many events
% \vspace*{\fill}
\end{column}
\begin{column}{.5\textwidth}
$\rightarrow$ can \textit{not} determine position of individual event solely from SiPM signal with certainty \linebreak
$\rightarrow$ need to improve (understanding of) detector
\end{column}
\end{columns}
\vspace{1cm}
\centering
Next steps:
\begin{itemize}
\item optical coupling between WOM and SiPM array has significant influence on signals \\
$\rightarrow$ study central position e.g. with external source
\item make analysis independent of number of detected photons \\
$\rightarrow$ normalise light yield $\overline{J_i} = \frac{J_i}{\sum_{k=0}^{7} J_k}$
% \item increase concentration of muons per position \\
% $\rightarrow$ position determination limited by plastic scintillators' time resolution \\
% $\rightarrow$ low rate of muons necessitates long measurement runs
\end{itemize}
\end{frame}
\section{}
\begin{frame}
\vfill
\vfill
\vspace*{\fill}
\begin{flushright}
Thank you for listening!
\end{flushright}
\end{frame}
\section{}
%------- References -------%
% \begin{singlespace}
\printbibliography
% \end{singlespace}
%% backup
\section{}
\begin{frame}{Scintillation Detection}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{itemize}
\item organic scintillators have delocalised electrons
\item electron in ground state $S_0$ can absorb photon $\rightarrow$ excitation
\item excited states $S_{1,2}$ not stable $\rightarrow$ radiationless transitions ($S_2 \rightarrow S_1$), de-excitation via photon emission ($S_1 \rightarrow S_0$) $\rightarrow$ fluorescence
\end{itemize}
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{pictures/jablonski.pdf}
\caption{Based on \cite{SCINTILLATION-TORRES}.}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Scintillation Detection}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{itemize}
\item suppressed secondary process: phosphorescence
\item fluorescence $\sim \order{1}\SI{}{\nano\second}$
\item phosphorescence $\sim \order{1}\SI{}{\micro\second}$ \\
\end{itemize}
$\Rightarrow$ 'efficiency' of scintillator lowered for small time scales
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{pictures/jablonski.pdf}
\caption{Based on \cite{SCINTILLATION-TORRES}.}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\begin{figure}
\includegraphics[width=.7\textwidth]{pictures/photomultiplier.pdf}
\caption{Cr.: Hamamatsu \cite{HAMAMATSU-PMT}.}
\end{figure}
\begin{itemize}
\item photoelectrons get multiplied by acceleration and knocking more electrons lose
\item response time mainly from number of multiplications, acceleration time, transit time to anode
\end{itemize}
\end{frame}
\begin{frame}
\begin{figure}
\includegraphics[width=.5\textwidth]{pictures/coverage.pdf}
\end{figure}
\begin{itemize}
\item imperfect coverage of WOM by SiPM array could favour some channels
\end{itemize}
\end{frame}
\end{document}