Skip to content

Commit 9f27581

Browse files
committed
feat: more content
1 parent 470e3ca commit 9f27581

File tree

3 files changed

+26
-6
lines changed

3 files changed

+26
-6
lines changed

doc/source/conf.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -99,7 +99,7 @@
9999
"sphinx_design",
100100
"sphinx_jinja",
101101
"sphinx_copybutton",
102-
# "sphinx_gallery.gen_gallery",
102+
"sphinx_gallery.gen_gallery",
103103
"sphinxemoji.sphinxemoji",
104104
"sphinx.ext.graphviz",
105105
"ansys_sphinx_theme.extension.linkcode",
Loading

doc/source/examples/extended_examples/sfem/stochastic_fem.rst

+25-5
Original file line numberDiff line numberDiff line change
@@ -84,13 +84,13 @@ Here:
8484

8585
For example, :math:`E(x)` could be a Gaussian random field, in which case it has the stationarity
8686
property, making its statistics completely defined by its mean (:math:`\mu_E`), standard deviation
87-
(:math:`\sigma_E`) and covariance function :math:`C_E(x_1,x_2)`. This 'stationarity' simply means
87+
(:math:`\sigma_E`) and covariance function :math:`C_E(x_i,x_j)`. This 'stationarity' simply means
8888
that the mean and standard deviation of every random variable :math:`E(x)` is constant and equal to
89-
:math:`\mu_E` and :math:`\sigma_E` respectively. :math:`C_E(x_1,x_2)` describes how random variables
90-
:math:`E(x_1)` and :math:`E(x_2)` are related.
89+
:math:`\mu_E` and :math:`\sigma_E` respectively. :math:`C_E(x_i,x_j)` describes how random variables
90+
:math:`E(x_i)` and :math:`E(x_j)` are related.
9191
For a zero-mean Gaussian random field, the covariance function is given by:
9292

93-
.. math:: C_E(x_1,x_2) = \sigma_E^2e^{-\frac{\lvert x_1-x_2 \rvert}{\ell}}
93+
.. math:: C_E(x_i,x_j) = \sigma_E^2e^{-\frac{\lvert x_i-x_j \rvert}{\ell}}
9494

9595
where :math:`\sigma_E^2` is the variance, and :math:`\ell` is the correlation length parameter.
9696

@@ -100,4 +100,24 @@ realization/sample function assigned to each outcome of an experiment.
100100

101101
.. figure:: realizations.png
102102

103-
A random field as a collection of random variables or realizations
103+
A random field as a collection of random variables or realizations
104+
105+
.. note::
106+
The concepts above generalize to more dimensions, for example, a random vector instead of a random
107+
variable, or an :math:`\mathbb{R}^d`-valued stochastic process. The presentation above is however
108+
sufficient for this example.
109+
110+
Series expansion of stochastic processes
111+
----------------------------------------
112+
Since a stochastic processes involves an infinite number of random variables, most engineering applications
113+
involving stochastic processes will be mathematically and computationally intractable if there isn't a way of
114+
approximating them with a series of a finite number of random variables. A series expansion method which will
115+
be used in this example is explained next.
116+
117+
The Karhunen-Loève (K-L) series expansion
118+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
119+
For a zero-mean stationary gaussian process, :math:`X(t)`, with covariance function
120+
:math:`C_X(t_i,t_j)=\sigma_X^2e^{-\frac{\lvert t_i-t_j \rvert}{b}}` defined on a domain :math:`\mathbb{D}=[-a,a]`,
121+
the K-L series expansion is given by:
122+
123+
.. math:: X(t) = \sum_{n=1}^\infty \sqrt{\lambda_{n,c}}\cdot\phi_{n,c}(t)\cdot\xi_{n,c} + \sum_{n=1}^\infty \sqrt{\lambda_{n,s}}\cdot\phi_{n,s}(t)\cdot\xi_{n,s},\quad t\in\mathbb{D}

0 commit comments

Comments
 (0)