-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathplane-curves.tex
564 lines (456 loc) · 21.3 KB
/
plane-curves.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
\chapter{Signed curvature}
On the plane, it makes sense to think about left (right) turns as positive (respectively negative).
This leads to the so-called \textit{signed curvature} of plane curves.
If you drive a car along a plane curve, then the signed curvature describes the position of the steering wheel at a given %point.
time.
\label{chap:signed-curvature}
\section{Definitions}\label{sec:def(skur)}
Suppose $\gamma$ is a smooth unit-speed plane curve,
so $\tan(s)=\gamma'(s)$ is its unit tangent vector for any~$s$.
Let us rotate $\tan(s)$ by the angle $\tfrac\pi 2$ counterclockwise;
denote the obtained vector by $\norm(s)$.
The pair $\tan(s),\norm(s)$ is an oriented orthonormal frame in the plane which is analogous to the Frenet frame
defined in Section~\ref{sec:frenet-frame};
we will keep the name \index{Frenet frame}\emph{Frenet frame} for it.
Recall that $\gamma''(s)\perp \gamma'(s)$ (see \ref{prop:a'-pertp-a''}).
Therefore, \index{10k@$\skur$ (signed curvature)}
\[\tan'(s)=\skur(s)\cdot \norm(s).\eqlbl{eq:tau'}\]
for a real number $\skur(s)$;
the value $\skur(s)$ is called \index{curvature}\index{signed curvature}\emph{signed curvature} of $\gamma$ at~$s$.
We may use the notation $\skur(s)_\gamma$ if we need to specify the curve~$\gamma$.
Note that
\[\kur(s)=|\skur(s)|;\]
that is, up to sign, the signed curvature $\skur(s)$ equals the curvature $\kur(s)$ of $\gamma$ at $s$ defined in Section~\ref{sec:curvature};
the sign prescribes the direction of turn --- if $\gamma$ turns left at time $s$, then $\skur (s)>0$.
If we want to emphasize that we are working with the \textit{non-signed} curvature of a curve,
we call it \index{curvature}\index{absolute curvature}\emph{absolute curvature}.
If we reverse the parametrization of the curve or change the orientation of the plane, then
the signed curvature changes its sign.
Since $\tan(s),\norm(s)$ is an orthonormal frame, we have
\begin{align*}
\langle\tan,\tan\rangle&=1,
&
\langle\norm,\norm\rangle&=1,
&
\langle\tan,\norm\rangle&=0.
\end{align*}
Differentiating these identities we get
\begin{align*}
\langle\tan',\tan\rangle&=0,
&
\langle\norm',\norm\rangle&=0,
&
\langle\tan',\norm\rangle+\langle\tan,\norm'\rangle&=0.
\end{align*}
By \ref{eq:tau'}, $\langle\tan',\norm\rangle=\skur$.
Therefore $\langle\tan,\norm'\rangle=-\skur$.
Hence, we get
\[\norm'(s)=-\skur(s)\cdot \tan(s).\eqlbl{eq:nu'}\]
The equations \ref{eq:tau'} and \ref{eq:nu'} are the Frenet formulas for plane curves.
They can be written in a matrix form as:
\[
\begin{pmatrix}
\tan'
\\
\norm'
\end{pmatrix}
=
\begin{pmatrix}
0&\skur
\\
-\skur&0
\end{pmatrix}
\cdot
\begin{pmatrix}
\tan
\\
\norm
\end{pmatrix}.
\]
\begin{thm}{Exercise}\label{ex:bike}
Let $\gamma_0\:[a,b]\to\mathbb{R}^2$ be a smooth curve and $\tan$ its tangent indicatrix.
Consider another curve $\gamma_1\:[a,b]\to\mathbb{R}^2$ defined by $\gamma_1(t)\z\df\gamma_0(t)+\tan(t)$.
Show that
\begin{minipage}{.47\textwidth}
\begin{subthm}{ex:bike:length}$\length\gamma_0\le \length\gamma_1$;
\end{subthm}
\end{minipage}
\hfill
\begin{minipage}{.47\textwidth}
\begin{subthm}{ex:bike:tc}$\tc{\gamma_0}\le \length\gamma_1$.
\end{subthm}
\end{minipage}
\end{thm}
The curves $\gamma_0$ and $\gamma_1$ in the exercise above describe the tracks of an idealized bicycle with distance 1 from the rear to the front wheel.
Thus, by the exercise, the front wheel must have a longer track.
For more on the geometry of bicycle tracks, see the survey of Robert Foote, Mark Levi, and Serge Tabachnikov \cite{foote-levi-tabachnikov} and the references therein.
\section{Fundamental theorem of plane curves}
\begin{thm}{Theorem}\label{thm:fund-curves-2D}
Let $s\mapsto \skur(s)$ be a smooth real-valued function defined on a real interval $\mathbb{I}$.
Then there is a smooth unit-speed curve $\gamma\:\mathbb{I}\to\mathbb{R}^2$ with signed curvature $\skur(s)$.
Moreover, $\gamma$ is uniquely defined up to a orientation-preserving motion of the plane.
\end{thm}
This theorem is a partial case of its 3-dimensional analog (\ref{thm:fund-curves}), but we present a direct proof.
\parbf{Proof.}
Fix $s_0\in\mathbb{I}$.
Consider the function
\[\theta(s)
=
\int_{s_0}^s\skur(t)\cdot dt.\]
By the fundamental theorem of calculus, we have $\theta'(s)\z=\skur(s)$ for all~$s$.
Set
$\tan(s)=(\cos[\theta(s)],\sin[\theta(s)])$,
and let $\norm(s)$ be its counterclockwise rotation by angle $\tfrac\pi2$; so
$\norm(s)=(-\sin[\theta(s)],\cos[\theta(s)])$.
Consider the curve
\[\gamma(s)=\int_{s_0}^s\tan(s)\cdot ds.\]
Since $|\gamma'|=|\tan|=1$, the curve $\gamma$ is unit-speed, and its Frenet frame is~$\tan,\norm$.
Note that
\begin{align*}
\gamma''(s)&=\tan'(s)=
\\
&=(\cos[\theta(s)]',\sin[\theta(s)]')=
\\
&=\theta'(s)\cdot (-\sin[\theta(s)],\cos[\theta(s)])=
\\
&=\skur(s)\cdot \norm(s).
\end{align*}
So, $\skur(s)$ is the signed curvature of $\gamma$ at~$s$.
This proves the existence;
it remains to prove the uniqueness.
Assume $\gamma_1$ and $\gamma_2$ are two curves that satisfy the assumptions of the theorem.
Applying a rigid motion, we can assume that $\gamma_1(s_0)\z=\gamma_2(s_0)$, and both curves have the same Frenet frame at $s_0$.
Let us denote by $\tan_1,\norm_1$ and $\tan_2,\norm_2$ the Frenet frames of $\gamma_1$ and $\gamma_2$, respectively.
Both triples $\gamma_i,\tan_i,\norm_i$ satisfy the following system of ordinary differential equations
\[
\begin{cases}
\gamma_i'=\tan_i,
\\
\tan_i'=\skur\cdot\norm_i,
\\
\norm_i'=-\skur\cdot\tan_i.
\end{cases}
\]
Moreover, they have the same initial values at $s_0$.
By the uniqueness of solutions of ordinary differential equations (\ref{thm:ODE}), we have $\gamma_1=\gamma_2$.
\qeds
Suppose $\gamma\:\mathbb{I}\to\mathbb{R}^2$ is a unit-speed curve.
A continuous function $\theta\:\mathbb{I}\to\mathbb{R}$ is called \index{continuous!argument}\emph{continuous argument} of $\gamma$ if
\[\gamma'(s)=(\cos [\theta(s)],\sin[\theta(s)])\]
for any $s$.
The proof of the theorem implies the following.
\begin{thm}{Corollary}\label{cor:2D-angle}
For any smooth curve unit-speed curve $\gamma\:\mathbb{I}\to\mathbb{R}^2$ there is a continuous argument $\theta\:\mathbb{I}\to\mathbb{R}$.
Moreover
\[\theta'(s)=\skur(s),\]
where $\skur$ denotes the signed curvature of~$\gamma$.
\end{thm}
\section{Total signed curvature}\label{sec:Total signed curvature}
Let $\gamma\:\mathbb{I}\to\mathbb{R}^2$ be a smooth unit-speed plane curve.
The \index{curvature}\index{total!signed curvature}\emph{total signed curvature} of $\gamma$, denoted by $\tgc\gamma$, is defined as the integral \index{10psi@$\tgc\gamma$ (total signed curvature)}
\[\tgc\gamma
=
\int_\mathbb{I} \skur(s)\cdot ds,\eqlbl{eq:tsc-k}\]
where $\skur$ denotes the signed curvature of~$\gamma$.
If $\mathbb{I}=[a,b]$, then
\[\tgc\gamma=\theta(b)-\theta(a),\eqlbl{eq:tsc-theta}\]
where $\theta$ is a continuous argument of $\gamma$ (see \ref{cor:2D-angle}).
If $\gamma$ is a piecewise smooth plane curve, then we define its total signed curvature as the sum of the total signed curvatures of its arcs plus the sum of the \textit{signed} external angles at its joints;
they are positive where $\gamma$ turns left, negative where $\gamma$ turns right, and 0 where $\gamma$ goes straight.
It is undefined if $\gamma$ turns exactly backwards;
that is, if it has a cusp.
In other words, if $\gamma$ is a concatenation of smooth arcs $\gamma_1,\dots,\gamma_n$, then
\[\tgc\gamma=\tgc{\gamma_1}+\dots+\tgc{\gamma_n}+\theta_1+\dots+\theta_{n-1},\]
where $\theta_i$ is the signed external angle at the joint between $\gamma_i$ and $\gamma_{i+1}$.
If $\gamma$ is closed, then the concatenation is cyclic, and
\[\tgc\gamma=\tgc{\gamma_1}+\dots+\tgc{\gamma_n}+\theta_1+\dots+\theta_{n},\]
where $\theta_n$ is the signed external angle at the joint between $\gamma_n$ and $\gamma_1$.
Since $\left|\int \skur(s)\cdot ds\right|\le \int|\skur(s)|\cdot ds$, we have
\[|\tgc\gamma|\le \tc\gamma\eqlbl{eq:tsc-tc}\]
for any smooth plane curve $\gamma$;
that is, the total signed curvature $\tgc{}$ cannot exceed the total curvature $\tc{}$ in absolute value.
The equality holds if and only if the signed curvature does not change the sign.
\begin{thm}{Exercise}\label{ex:trochoids}
A trochoid is a curve traced out by a point fixed to a wheel as it rolls along a straight line.
\begin{figure}[!ht]
\centering
\begin{lpic}[t(-0mm),b(0mm),r(0mm),l(0mm)]{asy/trochoids}
\lbl[l]{4,0;{\footnotesize $-\tfrac32$}}
\lbl[l]{4,6;{\footnotesize $-1$}}
\lbl[tl]{10,15;{\footnotesize $-\tfrac12$}}
\lbl[t]{22,17;{\footnotesize $0$}}
\lbl[r]{3,23.6;{\footnotesize $\tfrac12$}}
\lbl[r]{3,29.4;{\footnotesize $1$}}
\lbl[r]{3,35.2;{\footnotesize $\tfrac32$}}
\end{lpic}
\end{figure}
A family of \index{trochoid}\emph{trochoids} $\gamma_a\:[0,2\cdot\pi]\to \mathbb{R}^2$ (see the picture) can be parametrized as
\[\gamma_a(t)=(t+a\cdot \sin t, a\cdot \cos t).\]
\begin{enumerate}[(a)]
\item Given $a\in \mathbb{R}$, find $\tgc{\gamma_a}$ if it is defined.
\item Given $a\in \mathbb{R}$, find $\tc{\gamma_a}$.
\end{enumerate}
\end{thm}
\begin{thm}{Proposition}\label{prop:total-signed-curvature}
Any simple closed smooth plane curve $\gamma$ has total signed curvature $\pm2\cdot\pi$; it is $+2\cdot\pi$
if the region bounded by $\gamma$ lies on the left from it and $-2\cdot\pi$ otherwise.
Moreover, the same statement holds for any simple closed piecewise smooth plane curve $\gamma$ if its total signed curvature is defined.
\end{thm}
This proposition is called sometimes {}\emph{Umlaufsatz}; it is a differential-geometric analog of the theorem about the sum of the internal angles of a polygon (\ref{thm:sum=(n-2)pi}) which we use in the proof.
A more conceptual proof was given by Heinz Hopf \cite{hopf1935}, \cite[p. 42]{hopf1989}.
\parbf{Proof.}
Without loss of generality, we may assume that $\gamma$ is oriented in such a way that the region bounded by $\gamma$ lies on its left.
We can also assume that $\gamma$ is unit-speed.
Consider a closed polygonal line $p_1\dots p_n$ inscribed in~$\gamma$.
We can assume that the arcs between the vertices are sufficiently small
so that the polygonal line is simple, and each arc $\gamma_i$ from $p_i$ to $p_{i+1}$ has small total absolute curvature, say $\tc{\gamma_i}<\pi$ for each~$i$.
Assume $p_i=\gamma(t_i)$.
As usual, we use indexes modulo $n$; in particular, $p_{n+1}\z=p_1$.
Set
\begin{align*}
\vec w_i&=p_{i+1}-p_i,& \vec v_i&=\gamma'(t_i),
\\
\alpha_i&=\measuredangle(\vec v_i,\vec w_i),&\beta_i&=\measuredangle(\vec w_{i-1},\vec v_i),
\end{align*}
where $\alpha_i,\beta_i\in(-\pi,\pi)$ are signed angles --- $\alpha_i$ is positive if $\vec w_i$ points to the left from~$\vec v_i$.
{
\begin{wrapfigure}[13]{o}{43 mm}
\vskip-4mm
\centering
\includegraphics{mppics/pic-59}
\vskip0mm
\end{wrapfigure}
By \ref{eq:tsc-theta}, the value
\[\tgc{\gamma_i}-\alpha_i-\beta_{i+1}\eqlbl{eq:Psi-alpha-beta}\]
is a multiple of $2\cdot\pi$.
Since $\tc{\gamma_i}<\pi$, the chord lemma (\ref{lem:chord}) implies that $|\alpha_i|\z+|\beta_i|<\pi$.
By \ref{eq:tsc-tc}, we have that $|\tgc{\gamma_i}|\z\le\tc{\gamma_i}$;
therefore the value in \ref{eq:Psi-alpha-beta} vanishes.
In other words, for each $i$ we have
\[\tgc{\gamma_i}=\alpha_i+\beta_{i+1}.\]
}
Note that
\[\delta_i=\pi-\alpha_i-\beta_i\eqlbl{eq:delta=pi-alpha-beta}\]
is the internal angle of the polygonal line at $p_i$;
$\delta_i\in (0,2\cdot\pi)$ for each~$i$.
Recall that the sum of the internal angles of an $n$-gon is $(n-2)\cdot \pi$ (see \ref{thm:sum=(n-2)pi}); that is,
\[\delta_1+\dots+\delta_n=(n-2)\cdot \pi.\]
Therefore,
\[
\begin{aligned}
\tgc\gamma&=\tgc{\gamma_1}+\dots+\tgc{\gamma_n}=
\\
&=(\alpha_1+\beta_2)+\dots+(\alpha_n+\beta_1)=
\\
&=(\beta_1+\alpha_1)+\dots+(\beta_n+\alpha_n)=
\\
&=(\pi-\delta_1)+\dots+(\pi-\delta_n)=
\\
&=n\cdot\pi-(n-2)\cdot \pi=
\\
&=2\cdot\pi.
\end{aligned}\eqlbl{eq:delta=pi-alpha-beta-sum}\]
The case of piecewise smooth curves is done the same way;
we need to subdivide the arcs in the cyclic concatenation further to meet the requirement above, and, instead of equation \ref{eq:delta=pi-alpha-beta}, we have
\[\delta_i=\pi-\alpha_i-\beta_i-\theta_i,\]
where $\theta_i$ is the signed external angle of $\gamma$ at $p_i$; it vanishes if the curve $\gamma$ is smooth at $p_i$.
Therefore, instead of equation \ref{eq:delta=pi-alpha-beta-sum}, we have
\begin{align*}
\tgc\gamma&=\tgc{\gamma_1}+\dots+\tgc{\gamma_n}+\theta_1+\dots+\theta_n=
\\
&=(\alpha_1+\beta_2)+\dots+(\alpha_n+\beta_1)+\theta_1+\dots+\theta_n=
\\
&=(\beta_1+\alpha_1+\theta_1)+\dots+(\beta_n+\alpha_n+\theta_n)=
\\
&=(\pi-\delta_1)+\dots+(\pi-\delta_n)=
\\
&=n\cdot\pi-(n-2)\cdot \pi=
\\
&=2\cdot\pi.
\end{align*}
\qedsf
\begin{thm}{Exercise}\label{ex:zero-tsc}
Draw a smooth closed plane curve $\gamma$ such that
\begin{subthm}{ex:zero-tsc:0}
$\tgc\gamma=0$;
\end{subthm}
\begin{subthm}{ex:zero-tsc:5}
$\tgc\gamma=\tc\gamma=10\cdot\pi$;
\end{subthm}
\begin{subthm}{ex:zero-tsc:2-4}
$\tgc\gamma=2\cdot \pi$ and $\tc\gamma=4\cdot\pi$.
\end{subthm}
\end{thm}
\begin{thm}{Exercise}\label{ex:length'}
Let $\gamma\:[a,b]\to\mathbb{R}^2$ be a smooth plane curve with Frenet frame $\tan,\norm$.
Given a real parameter $\ell$, consider
the curve $\gamma_\ell(t)\z=\gamma(t)\z+\ell\cdot\norm(t)$; it is called a \index{parallel!curve}\emph{parallel curve} of $\gamma$ at signed distance~$\ell$.
\begin{subthm}{ex:length':reg}
Show that the parametrization $\gamma_\ell$ is a regular if $\ell\cdot \skur(t)_\gamma\ne 1$ for all~$t$.
\end{subthm}
\begin{subthm}{ex:length':formula}
Set $L(\ell)=\length\gamma_\ell$.
Show that
\[L(\ell)=L(0)-\ell\cdot\tgc\gamma\eqlbl{eq:length(parallel-curve)}\]
for all $\ell$ sufficiently close to $0$.
\end{subthm}
\begin{subthm}{ex:length':antiformula}
Describe an example showing that formula \ref{eq:length(parallel-curve)} may not hold for some values~$\ell$.
\end{subthm}
\end{thm}
\section{Osculating circle}
\begin{thm}{Proposition}\label{prop:circline}
Given a point $p\in\mathbb{R}^2$,
a unit vector $\tan$
and a real number $\skur$, there is a unique smooth unit-speed curve $\sigma\:\mathbb{R}\to\mathbb{R}^2$
that starts at $p$ in the direction of $\tan$ and signed curvature $\skur$.
Moreover, if $\skur=0$, then it is a line $\sigma(s)=p+s\cdot \tan$;
if $\skur\ne 0$, then $\sigma$ runs around a circle of radius $\tfrac1{|\skur|}$ with center at $p+\tfrac1\skur\cdot \norm$, where $\tan,\norm$ is an oriented orthonormal frame.
\end{thm}
\parbf{Proof.}
Choose a coordinate system such that $p$ is its origin and $\tan$ points in the direction of the $x$-axis.
Therefore, $\norm$ points in the direction of the $y$-axis.
Then
\begin{align*}\theta(s)&=\int_{0}^s\skur\cdot dt=\skur\cdot s
\end{align*}
is a continuous argument of $\gamma$, see \ref{cor:2D-angle}.
Therefore,
\[\sigma'(s)=(\cos[\skur\cdot s],\sin[\skur\cdot s]).\]
It remains to integrate the last identity.
If $\skur=0$, we get $\sigma(s)=(s,0)$
which describes the line $\sigma(s)=p+s\cdot \tan$.
If $\skur\ne 0$, we get
\[\sigma(s)=(\tfrac1\skur\cdot\sin[\skur\cdot s],
\tfrac1\skur\cdot(1-\cos[\skur\cdot s]));\]
it is the circle of radius $r=\tfrac1{|\skur|}$ centered at $(0,\tfrac1\skur)=p+\tfrac1\skur\cdot\norm$.
\qeds
\begin{thm}{Definition}
Let $\gamma$ be a smooth unit-speed plane curve;
denote by $\skur(s)$ the signed curvature of $\gamma$ at~$s$.
The unit-speed curve $\sigma_s$ of constant signed curvature $\skur(s)$ that starts at $\gamma(s)$ in the direction $\gamma'(s)$ is called the \index{osculating!circle}\emph{osculating circle} of $\gamma$ at~$s$.
The center and radius of the osculating circle at a given point are called the \index{center of curvature}\emph{center of curvature} and \index{radius of curvature}\emph{radius of curvature} of the curve at that point.
\end{thm}
{
\begin{wrapfigure}{o}{31 mm}
\vskip-0mm
\centering
\includegraphics{mppics/pic-21}
\vskip0mm
\end{wrapfigure}
The \textit{osculating circle} might be a circle or a line.
In the latter case, the center of curvature is undefined and the radius of curvature is infinite.
The osculating circle $\sigma_s$ can be also defined as the unique circle (or line) that has \index{order of contact}\emph{second-order contact} with $\gamma$ at $s$;
that is, $\rho(\ell)\z=o(\ell^2)$, where $\rho(\ell)$ denotes the distance from $\gamma(s+\ell)$ to $\sigma_s$.
The following exercise is recommended to the reader familiar with the notion of \index{inversion}\emph{inversion}.
}
\begin{thm}{Advanced exercise}\label{ex:inverse}
Suppose $\gamma$ is a smooth plane curve that does not pass thru the origin.
Let $\hat \gamma$ be the inversion of $\gamma$ with respect to a circle centered at the origin.
Show that the osculating circle of $\hat\gamma$ at $s$ is the inversion of the osculating circle of $\gamma$ at~$s$.
\end{thm}
\section{Spiral lemma}
\label{spiral}
\index{spiral lemma}
The following lemma was proved by Peter Tait \cite{tait}
and later rediscovered by Adolf Kneser \cite{kneser}.
\begin{thm}{Lemma}\label{lem:spiral}
Assume $\gamma$ is a smooth plane curve with strictly decreasing positive signed curvature. Then the osculating circles of $\gamma$ are nested; that is, if $\sigma_s$ denotes the osculating circle of $\gamma$ at $s$,
then $\sigma_{s_0}$ lies in the open disc bounded by $\sigma_{s_1}$ for any $s_0<s_1$. \index{10sigma@$\sigma_s$ (osculating circle)}
\end{thm}
{
\begin{wrapfigure}{r}{31 mm}
\vskip-6mm
\includegraphics{mppics/pic-61}
\end{wrapfigure}
The picture shows a curve $\gamma$ as in the theorem and its osculating circles.
They form a peculiar foliation of the annulus; it meets the following property:
if a smooth function is constant on each osculating circle, then it must be constant in the annulus \cite[Lecture 10]{fuchs-tabachnikov}.
Also, the curve $\gamma$ is tangent to a circle of the foliation at each of its points.
However, it does not run along any of those circles.
}
\parbf{Proof.}
Let $\tan(s),\norm(s)$ be the Frenet frame,
$\omega(s)$, $r(s)$
the center and radius of curvature of~$\gamma$.
By \ref{prop:circline}, we have
\[\omega(s)=\gamma(s)+r(s)\cdot \norm(s).\]
Since $\skur>0$, we have that $r(s)\cdot\skur(s)=1$.
Therefore, applying Frenet formula \ref{eq:nu'}, we get that
\begin{align*}
\omega'(s)&=\gamma'(s)+r'(s)\cdot \norm(s)+r(s)\cdot \norm'(s)=
\\
&=\tan(s)+r'(s)\cdot \norm(s)-r(s)\cdot \skur(s)\cdot \tan(s)=
\\
&=r'(s)\cdot \norm(s).
\end{align*}
Since $\skur(s)$ is decreasing, $r(s)$ is increasing;
therefore $r'\ge 0$.
It follows that $|\omega'(s)|= r'(s)$ and $\omega'(s)$ points in the direction of $\norm(s)$.
Since $\norm'(s)=-\skur(s)\cdot\tan(s)$, the direction of $\omega'(s)$ cannot be constant on a nontrivial interval;
in other words, the curve $s\mapsto \omega(s)$ contains no line segments.
\begin{wrapfigure}[5]{o}{35 mm}
\vskip-0mm
\centering
\includegraphics{mppics/pic-84}
\end{wrapfigure}
In particular, $|\omega(s_1)-\omega(s_0)|\z<\length(\omega|_{[s_0,s_1]})$ for any $s_0<s_1$.
Therefore,
\begin{align*}
|\omega(s_1)-\omega(s_0)|&<\length(\omega|_{[s_0,s_1]})=
\\
&=\int_{s_0}^{s_1}|\omega'(s)|\cdot ds=
\\
&=\int_{s_0}^{s_1}r'(s)\cdot ds=
\\
&=r(s_1)-r(s_0).
\end{align*}
In other words, the distance between the centers of $\sigma_{s_1}$ and $\sigma_{s_0}$
is strictly less than the difference between their radii, hence the result.
\qeds
The curve $s\mapsto \omega(s)$ is called the \index{evolute}\emph{evolute} of $\gamma$;
it traces the centers of curvature of the curve.
The evolute of $\gamma$ can be written as
\[\omega(t)=\gamma(t)+\tfrac1{\skur(t)}\cdot \norm(t);\]
in the proof, we showed that $(\tfrac1{\skur})'\cdot\norm$ is its velocity vector.
\begin{thm}{Exercise}\label{ex:evolute}
Let $\omega$ be the evolute of a smooth plane curve~$\gamma$.
Suppose $\gamma$ has positive signed curvature $\skur$ and $\skur' \neq 0$ at all points.
%%%%%%% Vertices haven't been defined yet.
Find the Frenet frame and curvature of \(\omega\) in terms of $\skur$ and Frenet frame $(\tan,\norm)$ of $\gamma$.
\end{thm}
The following theorem states formally that
\textit{if you drive on the plane and turn the steering wheel to the left all the time,
then you will not be able to come back to the place you started.}
\begin{thm}{Theorem}\label{thm:spiral}
Assume $\gamma$ is a smooth plane curve with positive strictly monotone signed curvature.
Then $\gamma$ is simple.
\end{thm}
The same statement holds true without assuming positivity of curvature; the proof requires only minor modifications.
\parbf{Proof.}
Note that $\gamma(s)$ lies on the osculating circle $\sigma_s$ of $\gamma$ at~$s$.
If $s_1\ne s_0$, then by \ref{lem:spiral}, $\sigma_{s_0}$ does not intersect $\sigma_{s_1}$.
Therefore, $\gamma(s_1)\ne \gamma(s_0)$,
hence the result.\qeds
\begin{thm}{Advanced exercise}\label{ex:3D-spiral}
Show that a 3-dimensional analog of the theorem does not hold.
That is, there are self-intersecting smooth space curves with strictly monotone curvature.
\end{thm}
\begin{thm}{Exercise}\label{ex:double-tangent}
Assume $\gamma$ is a smooth plane curve with positive strictly monotone signed curvature.
\begin{subthm}{ex:double-tangent:a}Show that no line can be tangent to $\gamma$ at two distinct points.
\end{subthm}
\begin{subthm}{ex:double-tangent:b}Show that no circle can be tangent to $\gamma$ at three distinct points.
\end{subthm}
\end{thm}
{
\begin{wrapfigure}{o}{25 mm}
\vskip-6mm
\centering
\includegraphics{mppics/pic-25}
\vskip0mm
\end{wrapfigure}
Part \ref{SHORT.ex:double-tangent:a} does not hold if we allow the curvature to be negative; an example is shown on the picture.
}
\begin{thm}{Advanced exercise}\label{ex:spherical-spiral}
Show that a smooth spherical curve with nonvanishing torsion has no self-intersections.
\end{thm}