-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlist.rs
290 lines (234 loc) · 8.23 KB
/
list.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
use std::{marker::PhantomData, ptr::NonNull};
use crate::{header::Header, Pointer};
/// Linked list node. See also [`Header<T>`].
pub(crate) struct Node<T> {
pub next: Pointer<Self>,
pub prev: Pointer<Self>,
pub data: T,
}
/// Custom linked list implementation for this allocator. Each
/// [`crate::bucket::Bucket`] has to manage 3 linked list structures: list of
/// regions (see [`crate::region::Region`]), list of blocks inside every region
/// (see [`crate::block::Block`]) and list of free blocks (see
/// [`crate::freelist`]). This struct is reused for all mentioned cases.
pub(crate) struct LinkedList<T> {
head: Pointer<Node<T>>,
tail: Pointer<Node<T>>,
len: usize,
marker: PhantomData<T>,
}
/// Low level iterator for the linked list.
pub(crate) struct Iter<T> {
current: Pointer<Node<T>>,
len: usize,
marker: PhantomData<T>,
}
impl<T> LinkedList<T> {
/// Creates an empty linked list. No allocations happen because, well, we
/// are the allocator.
pub const fn new() -> Self {
Self {
head: None,
tail: None,
len: 0,
marker: PhantomData,
}
}
/// Number of elements in the list.
#[inline]
pub fn len(&self) -> usize {
self.len
}
/// First element in the list.
#[inline]
pub fn first(&self) -> Pointer<Header<T>> {
self.head
}
/// Last element in the list. For now it's only used in tests.
#[cfg(test)]
#[inline]
pub fn last(&self) -> Pointer<Header<T>> {
self.tail
}
/// Appends a new node to the linked list. Since it cannot do allocations
/// (WE ARE THE ALLOCATOR!) it needs the address where the node should be
/// written to.
///
/// # SAFETY
///
/// Caller must guarantee that `address` is valid.
///
/// # Arguments
///
/// * `data` - The data that the new node will hold.
///
/// * `address` - Memory address where the new node will be written. Must
/// be valid and non null.
pub unsafe fn append(&mut self, data: T, address: NonNull<u8>) -> NonNull<Header<T>> {
let node = address.cast::<Node<T>>();
node.as_ptr().write(Node {
prev: self.tail,
next: None,
data,
});
if let Some(mut tail) = self.tail {
tail.as_mut().next = Some(node);
} else {
self.head = Some(node);
}
self.tail = Some(node);
self.len += 1;
node
}
/// Inserts a new node with the given `data` right after the given `node`.
/// New node will be written to `address`, so address must be valid and
/// non-null.
///
/// # Safety
///
/// Caller must guarantee that both `address` and `node` are valid.
pub unsafe fn insert_after(
&mut self,
mut node: NonNull<Node<T>>,
data: T,
address: NonNull<u8>,
) -> NonNull<Header<T>> {
let new_node = address.cast::<Node<T>>();
new_node.as_ptr().write(Node {
prev: Some(node),
next: node.as_ref().next,
data,
});
if node == self.tail.unwrap() {
self.tail = Some(new_node);
} else {
node.as_ref().next.unwrap().as_mut().prev = Some(new_node);
}
node.as_mut().next = Some(new_node);
self.len += 1;
new_node
}
/// Removes `node` from the linked list. `node` must be valid.
pub unsafe fn remove(&mut self, mut node: NonNull<Node<T>>) {
if self.len == 1 {
self.head = None;
self.tail = None;
} else if node == self.head.unwrap() {
node.as_mut().next.unwrap().as_mut().prev = None;
self.head = node.as_ref().next;
} else if node == self.tail.unwrap() {
node.as_mut().prev.unwrap().as_mut().next = None;
self.tail = node.as_ref().prev;
} else {
let mut next = node.as_ref().next.unwrap();
let mut prev = node.as_ref().prev.unwrap();
prev.as_mut().next = Some(next);
next.as_mut().prev = Some(prev);
}
self.len -= 1;
}
/// Returns an iterator over the linked list elements. The values are
/// [`NonNull<Header<T>>`], we don't want to deal with moves and references
/// in this collection. This collection will never be dropped, the allocator
/// just calls [`libc::munmap`] to return memory regions back to the kernel.
/// See [`Drop`] implementation for [`crate::bucket::Bucket`].
pub fn iter(&self) -> Iter<T> {
Iter {
current: self.head,
len: self.len,
marker: PhantomData,
}
}
}
impl<T> Iterator for Iter<T> {
type Item = NonNull<Node<T>>;
fn next(&mut self) -> Option<Self::Item> {
self.current.map(|node| unsafe {
self.current = node.as_ref().next;
self.len -= 1;
node
})
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.len, Some(self.len))
}
}
impl<T> IntoIterator for &LinkedList<T> {
type Item = NonNull<Node<T>>;
type IntoIter = Iter<T>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
#[cfg(test)]
mod tests {
use std::{mem, ptr::NonNull};
use super::*;
use crate::platform;
#[test]
fn linked_list_operations() {
unsafe {
let mut list: LinkedList<u8> = LinkedList::new();
let region = platform::request_memory(platform::page_size()).unwrap();
let size = mem::size_of::<Node<u8>>();
// N1 <-> N2 <-> N3
let node1 = list.append(1, region);
let node2 = list.append(2, NonNull::new_unchecked(region.as_ptr().add(size)));
let node3 = list.append(3, NonNull::new_unchecked(region.as_ptr().add(size * 2)));
assert_eq!(list.len, 3);
assert_eq!(node1.as_ref().data, 1);
assert_eq!(node2.as_ref().data, 2);
assert_eq!(node3.as_ref().data, 3);
assert_eq!(list.head, Some(node1));
assert_eq!(list.tail, Some(node3));
assert_eq!(node1.as_ref().next, Some(node2));
assert_eq!(node1.as_ref().prev, None);
assert_eq!(node2.as_ref().next, Some(node3));
assert_eq!(node2.as_ref().prev, Some(node1));
assert_eq!(node3.as_ref().next, None);
assert_eq!(node3.as_ref().prev, Some(node2));
// N1 <-> N2 <-> N4 <-> N3
let node4 = list.insert_after(
node2,
4,
NonNull::new_unchecked(region.as_ptr().add(size * 3)),
);
assert_eq!(list.len, 4);
assert_eq!(list.tail, Some(node3));
assert_eq!(node4.as_ref().data, 4);
assert_eq!(node4.as_ref().next, Some(node3));
assert_eq!(node4.as_ref().prev, Some(node2));
assert_eq!(node2.as_ref().next, Some(node4));
assert_eq!(node2.as_ref().prev, Some(node1));
assert_eq!(node3.as_ref().next, None);
assert_eq!(node3.as_ref().prev, Some(node4));
// N1 <-> N2 <-> N3
list.remove(node4);
assert_eq!(list.len, 3);
assert_eq!(node2.as_ref().next, Some(node3));
assert_eq!(node2.as_ref().prev, Some(node1));
assert_eq!(node3.as_ref().next, None);
assert_eq!(node3.as_ref().prev, Some(node2));
// N1 <-> N2
list.remove(node3);
assert_eq!(list.len, 2);
assert_eq!(Some(node1), list.head);
assert_eq!(Some(node2), list.tail);
assert_eq!(node2.as_ref().next, None);
assert_eq!(node2.as_ref().prev, Some(node1));
// N2
list.remove(node1);
assert_eq!(list.len, 1);
assert_eq!(Some(node2), list.head);
assert_eq!(Some(node2), list.tail);
assert_eq!(node2.as_ref().next, None);
assert_eq!(node2.as_ref().prev, None);
// Empty
list.remove(node2);
assert_eq!(list.tail, None);
assert_eq!(list.head, None);
assert_eq!(list.len, 0);
platform::return_memory(region, platform::page_size());
}
}
}