diff --git a/ocw/dataset_processor.py b/ocw/dataset_processor.py index cf2e90e2..a167acc6 100755 --- a/ocw/dataset_processor.py +++ b/ocw/dataset_processor.py @@ -15,20 +15,19 @@ # limitations under the License. # -from ocw import dataset as ds -import ocw.utils as utils - import datetime +import logging + +import netCDF4 import numpy as np import numpy.ma as ma -from scipy.interpolate import griddata import scipy.ndimage -from scipy.stats import rankdata -from scipy.ndimage import map_coordinates -import netCDF4 from matplotlib.path import Path +from scipy.interpolate import griddata +from scipy.ndimage import map_coordinates -import logging +import ocw.utils as utils +from ocw import dataset as ds logger = logging.getLogger(__name__) @@ -149,7 +148,7 @@ def temporal_rebin_with_time_index(target_dataset, nt_average): It is the same as the number of time indicies to be averaged. length of time dimension in the rebinned dataset) = (original time dimension length/nt_average) - :type temporal_resolution: integer + :type nt_average: integer :returns: A new temporally rebinned Dataset :rtype: :class:`dataset.Dataset` @@ -505,10 +504,32 @@ def temporal_slice(target_dataset, start_time, end_time): :raises: ValueError ''' + + # https://issues.apache.org/jira/browse/CLIMATE-938 + # netCDF datetimes allow for a variety of calendars while Python has + # only one. This would throw an error about a calendar mismatch when + # comparing a Python datetime object to a netcdf datetime object. + # Cast the date as best we can so the comparison will compare like + # data types This will still throw an excdeption if the start / end date are + # not valid in given calendar. February 29th in a DatetimeNoLeap calendar for example. + slice_start_time = start_time + slice_end_time = end_time + + if isinstance(target_dataset.times.item(0), netCDF4.netcdftime._netcdftime.datetime): + slice_start_time =\ + type(target_dataset.times.item(0))(start_time.year, start_time.month, start_time.day, + start_time.hour, start_time.minute, start_time.second) + + slice_end_time =\ + type(target_dataset.times.item(0))(end_time.year, end_time.month, end_time.day, + end_time.hour, end_time.minute, end_time.second) + start_time_index = np.where( - target_dataset.times >= start_time)[0][0] + target_dataset.times >= slice_start_time)[0][0] + end_time_index = np.where( - target_dataset.times <= end_time)[0][-1] + target_dataset.times <= slice_end_time)[0][-1] + new_times = target_dataset.times[start_time_index:end_time_index + 1] new_values = target_dataset.values[start_time_index:end_time_index + 1, :]