-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_classifier.py
89 lines (61 loc) · 2.78 KB
/
test_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import pickle
import cv2
import mediapipe as mp
import numpy as np
# Grabs our model
model_dict = pickle.load(open('./model.p', 'rb'))
model = model_dict['model']
cap = cv2.VideoCapture(0) # Start the camera object
# Mediapipe objects to identify hand landmarks and draw out landmarks
mp_hands = mp.solutions.hands
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
# Detect hands and create a model using mp_hands
hands = mp_hands.Hands(static_image_mode=True, min_detection_confidence=0.3)
# To convert our labels to sign language
labels_dict = {0: 'A', 1: 'B', 2: 'L'}
while True:
data_aux = []
x_ = []
y_ = []
ret, frame = cap.read() # Access camera
H, W, _ = frame.shape
# Mediapipe requires images to be in rgb so we must convert
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Detect all the landmarks of the rgb image using hands model
results = hands.process(frame_rgb)
# If you detect a hand
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
# Draw out the hand landmarks
mp_drawing.draw_landmarks(
frame, # image to draw
hand_landmarks, # model output
mp_hands.HAND_CONNECTIONS, # hand connections
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style())
for hand_landmarks in results.multi_hand_landmarks: # Iterate through hands
for i in range(len(hand_landmarks.landmark)): # Iterate through landmarks in hand
x = hand_landmarks.landmark[i].x
y = hand_landmarks.landmark[i].y
data_aux.append(x)
data_aux.append(y)
x_.append(x)
y_.append(y)
# Calculations for a box around the hand
x1 = int(min(x_) * W) - 10
y1 = int(min(y_) * H) - 10 # Find bottom corner of hand rectangle
x2 = int(max(x_) * W) - 10
y2 = int(max(y_) * H) - 10
# predict our class using data aux x and y
prediction = model.predict([np.asarray(data_aux)])
# Convert prediction into sign language class
predicted_character = labels_dict[int(prediction[0])]
# Draw out out prediction
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 0), 4) # 000 is black colour, 4 is thickness
cv2.putText(frame, predicted_character, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 1.3, (0, 0, 0), 3,
cv2.LINE_AA) # Paste our prediction
cv2.imshow('frame', frame) # Show our final processed frame
cv2.waitKey(1) # Wait a second until next frame
cap.release() # Release the camera from memory
cv2.destroyAllWindows()