generated from fastai/nbdev_template
-
Notifications
You must be signed in to change notification settings - Fork 77
/
Copy pathrm_numba_aot_testing.py
481 lines (424 loc) · 19.6 KB
/
rm_numba_aot_testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
import os
os.environ['DEVELOPMENT'] = 'True'
#import seaborn as sns
#import matplotlib.pyplot as plt
import pandas as pd
from aquacrop import AquaCropModel, Soil, Crop, InitialWaterContent, IrrigationManagement, CO2, FieldMngt, GroundWater
from aquacrop.utils import prepare_weather
# function to return the irrigation depth to apply on next day
def get_depth(model, taw):
t = model._clock_struct.time_step_counter # current timestep
# print(f'Depletion = {model._init_cond.depletion}, model TAW = {model._init_cond.taw}, target TAW: {taw}')
# if t>0 and model._init_cond.depletion/model._init_cond.taw > taw:
if t>0 and model._init_cond.taw < taw:
depth=15
else:
depth=0
return depth
def run_aquacrop_model(crop_name, planting_date, soil_type, weather_file, output_file, initial_water_content, irrigation_management,
co2_file = 'C:/Users/s10034cb/Dropbox (The University of Manchester)/Manchester Postdoc/aquacrop/aquacrop/data/MaunaLoaCO2.txt',
wc_type='Num', method='Depth', depth_layer=[0.3, 0.9],
wc_values=[0.3, 0.15], sim_start_date='1979/10/15', sim_end_date='2001/03/31',
field_management = None, groundwater = None, initialise = False):
"""
Run AquaCrop model for specified parameters and save outputs to a CSV file.
Parameters:
crop_name (str): Name of the crop.
planting_date (str): Planting date in MM/DD format.
soil_type (str): Soil type for the model.
weather_file (str): Path to the weather file.
co2_file (str): Path to the CO2 concentration file.
output_file (str): Path to save the final stats CSV file.
irrigation_method (int): Irrigation management method (default: 0).
wc_type (str): Type of initial water content (default: 'Num').
method (str): Method for initial water content (default: 'Depth').
depth_layer (list): Depth layers for initial water content (default: [0.3, 0.9]).
wc_values (list): Water content values for the layers (default: [0.3, 0.15]).
sim_start_date (str): Simulation start date (default: '1979/10/15').
sim_end_date (str): Simulation end date (default: '2001/03/31').
"""
# Prepare weather data
weather_df = prepare_weather(weather_file)
# Define soil, crop, and initial water content
soil = Soil(soil_type=soil_type)
crop = Crop(crop_name, planting_date=planting_date)
# Load CO2 data
co2_data = pd.read_csv(co2_file, header=1, sep='\s+', names=["year", "ppm"])
co2_concentration = CO2(co2_data=co2_data)
if field_management:
if groundwater:
model = AquaCropModel(
sim_start_time=sim_start_date,
sim_end_time=sim_end_date,
weather_df=weather_df,
soil=soil,
crop=crop,
field_management = field_management,
irrigation_management=irrigation_management,
groundwater = groundwater,
initial_water_content=initial_water_content,
co2_concentration=co2_concentration
)
else:
model = AquaCropModel(
sim_start_time=sim_start_date,
sim_end_time=sim_end_date,
weather_df=weather_df,
soil=soil,
crop=crop,
field_management = field_management,
irrigation_management=irrigation_management,
initial_water_content=initial_water_content,
co2_concentration=co2_concentration
)
else:
if groundwater:
model = AquaCropModel(
sim_start_time=sim_start_date,
sim_end_time=sim_end_date,
weather_df=weather_df,
soil=soil,
crop=crop,
irrigation_management=irrigation_management,
initial_water_content=initial_water_content,
groundwater = groundwater,
co2_concentration=co2_concentration
)
else:
model = AquaCropModel(
sim_start_time=sim_start_date,
sim_end_time=sim_end_date,
weather_df=weather_df,
soil=soil,
crop=crop,
irrigation_management=irrigation_management,
initial_water_content=initial_water_content,
co2_concentration=co2_concentration
)
if initialise:
model._initialize()
while model._clock_struct.model_is_finished is False:
# get depth to apply, RAW = 36%, p_up2 = 0.6 so TAW = 21.6, inverse is 78.4
depth=get_depth(model,78.4)
model._param_struct.IrrMngt.depth=depth
model.run_model(initialize_model=False)
else:
# Run the model
model.run_model(till_termination=True)
# Save final stats
final_stats = model._outputs.final_stats
final_stats.to_csv(output_file)
print(f"Model run complete. Outputs saved to {output_file}.")
def run_all_exercises(file_prefix):
# DEFINE INITIAL WATER CONTENTS
wet_dry = InitialWaterContent(wc_type='Num',
method='Depth',
depth_layer=[0.3,0.9],
value=[0.3,0.15])
wet_top = InitialWaterContent('Prop','Depth',[0.5,2],['FC','WP'])
field_capacity = InitialWaterContent(value=['FC'])
iwc30taw = InitialWaterContent('Pct','Layer',[1],[30])
iwc30taw_2 = InitialWaterContent('Pct','Layer',[1,2],[30,30])
iwc75taw = InitialWaterContent('Pct','Layer',[1],[75])
iwc75taw_2 = InitialWaterContent('Pct','Layer',[1,2],[75,75])
iwc_wp = InitialWaterContent('Prop','Layer',[1],['WP'])
wp = InitialWaterContent(value=['WP'])
# DEFINE IRRIGATION MANAGEMENT
rainfed = IrrigationManagement(irrigation_method=0)
net_irr_7 = IrrigationManagement(irrigation_method=4,NetIrrSMT=80.5, MaxIrr=50)
net_irr_8 = IrrigationManagement(irrigation_method=4, NetIrrSMT=90.5)
net_irr_9 = IrrigationManagement(irrigation_method=4,NetIrrSMT=79, MaxIrr=40)
# deficit irri scheduling
all_1_decs=pd.date_range('1979/12/01', '2001/12/01',freq='12MS')
dates=[]
for each_start in all_1_decs:
app1=each_start
app2=each_start+pd.Timedelta(31,'d')
app3=each_start+pd.Timedelta(61,'d')
dates.extend([app1,app2,app3])
n_years=len(all_1_decs)
depths=[30,40,40]*n_years
schedule=pd.DataFrame([dates,depths]).T # create pandas DataFrame
schedule.columns=['Date','Depth'] # name columns
deficit_irr = IrrigationManagement(irrigation_method=3, Schedule=schedule, MaxIrr = 50)
schedule=IrrigationManagement(irrigation_method=5,)
# DEFINE FIELD MANAGEMENT
bunds20 = FieldMngt(bunds=True, z_bund=0.20)
# DEFINE GROUNDWATER
groundwater_1m = GroundWater('Y','Constant',dates=[f'{2000}/09/01'], values=[1])
groundwater_2m = GroundWater('Y','Constant',dates=[f'{2000}/09/01'], values=[2])
# EXERCISE 7.1 - WheatGDD with Tunis Local Soil
run_aquacrop_model(
crop_name='WheatGDD',
planting_date='10/15',
soil_type='ac_TunisLocal',
initial_water_content = wet_dry,
irrigation_management = rainfed,
weather_file='C:/Users/s10034cb/Dropbox (The University of Manchester)/Manchester Postdoc/aquacrop/aquacrop/data/tunis_climate.txt',
output_file=f'../AquaCrop docs/AOT Compilation Removal/{file_prefix}_7_1_localSoil.csv'
)
run_aquacrop_model(
crop_name='WheatGDD',
planting_date='10/15',
soil_type='SandyLoam',
initial_water_content = wet_dry,
irrigation_management = rainfed,
weather_file='C:/Users/s10034cb/Dropbox (The University of Manchester)/Manchester Postdoc/aquacrop/aquacrop/data/tunis_climate.txt',
output_file=f'../AquaCrop docs/AOT Compilation Removal/{file_prefix}_7_1_sandyLoam.csv'
)
# EXERCISE 7.3 - field capacity
run_aquacrop_model(
crop_name='WheatGDD',
planting_date='10/15',
soil_type='SandyLoam',
initial_water_content = field_capacity,
irrigation_management = rainfed,
weather_file='C:/Users/s10034cb/Dropbox (The University of Manchester)/Manchester Postdoc/aquacrop/aquacrop/data/tunis_climate.txt',
output_file=f'../AquaCrop docs/AOT Compilation Removal/{file_prefix}_7_3_fc.csv'
)
# EXERCISE 7.3 - 30% TAW
run_aquacrop_model(
crop_name='WheatGDD',
planting_date='10/15',
soil_type='SandyLoam',
initial_water_content = iwc30taw,
irrigation_management = rainfed,
weather_file='C:/Users/s10034cb/Dropbox (The University of Manchester)/Manchester Postdoc/aquacrop/aquacrop/data/tunis_climate.txt',
output_file=f'../AquaCrop docs/AOT Compilation Removal/{file_prefix}_7_3_taw30.csv'
)
# EXERCISE 7.3 - 75% TAW
run_aquacrop_model(
crop_name='WheatGDD',
planting_date='10/15',
soil_type='SandyLoam',
initial_water_content = iwc75taw,
irrigation_management = rainfed,
weather_file='C:/Users/s10034cb/Dropbox (The University of Manchester)/Manchester Postdoc/aquacrop/aquacrop/data/tunis_climate.txt',
output_file=f'../AquaCrop docs/AOT Compilation Removal/{file_prefix}_7_3_taw75.csv'
)
# EXERCISE 7.3 - wilting point
run_aquacrop_model(
crop_name='WheatGDD',
planting_date='10/15',
soil_type='SandyLoam',
initial_water_content = iwc_wp,
irrigation_management = rainfed,
weather_file='C:/Users/s10034cb/Dropbox (The University of Manchester)/Manchester Postdoc/aquacrop/aquacrop/data/tunis_climate.txt',
output_file=f'../AquaCrop docs/AOT Compilation Removal/{file_prefix}_7_3_wp.csv'
)
# EXERCISE 7.6 - net irri
run_aquacrop_model(
crop_name='WheatGDD',
planting_date='12/01',
sim_start_date = '1979/12/01',
sim_end_date = '2002/05/31',
soil_type='SandyLoam',
initial_water_content = wp,
irrigation_management = net_irr_7,
weather_file='C:/Users/s10034cb/Dropbox (The University of Manchester)/Manchester Postdoc/aquacrop/aquacrop/data/tunis_climate.txt',
output_file=f'../AquaCrop docs/AOT Compilation Removal/{file_prefix}_7_6.csv'
)
# EXERCISE 7.7 - deficit irri
run_aquacrop_model(
crop_name='WheatGDD',
planting_date='12/01',
sim_start_date = '1979/12/01',
sim_end_date = '2002/05/25',
soil_type='SandyLoam',
initial_water_content = wp,
irrigation_management = deficit_irr,
weather_file='C:/Users/s10034cb/Dropbox (The University of Manchester)/Manchester Postdoc/aquacrop/aquacrop/data/tunis_climate.txt',
output_file=f'../AquaCrop docs/AOT Compilation Removal/{file_prefix}_7_7.csv'
)
# EXERCISE 8.2 - nobunds
run_aquacrop_model(
crop_name='localpaddy',
planting_date='08/01',
sim_start_date = '2000/08/01',
sim_end_date = '2010/12/31',
soil_type='Paddy',
initial_water_content = field_capacity,
irrigation_management = rainfed,
weather_file='C:/Users/s10034cb/Dropbox (The University of Manchester)/Manchester Postdoc/aquacrop/aquacrop/data/hyderabad_climate.txt',
output_file=f'../AquaCrop docs/AOT Compilation Removal/{file_prefix}_8_2_nobunds.csv'
)
# EXERCISE 8.2 - bunds
run_aquacrop_model(
crop_name='localpaddy',
planting_date='08/01',
sim_start_date = '2000/08/01',
sim_end_date = '2010/12/31',
soil_type='Paddy',
initial_water_content = field_capacity,
irrigation_management = rainfed,
field_management = bunds20,
weather_file='C:/Users/s10034cb/Dropbox (The University of Manchester)/Manchester Postdoc/aquacrop/aquacrop/data/hyderabad_climate.txt',
output_file=f'../AquaCrop docs/AOT Compilation Removal/{file_prefix}_8_2_bunds.csv'
)
# EXERCISE 8.2 - earlyplant
run_aquacrop_model(
crop_name='localpaddy',
planting_date='07/15',
sim_start_date = '2000/07/15',
sim_end_date = '2010/12/31',
soil_type='Paddy',
initial_water_content = field_capacity,
irrigation_management = rainfed,
field_management = bunds20,
weather_file='C:/Users/s10034cb/Dropbox (The University of Manchester)/Manchester Postdoc/aquacrop/aquacrop/data/hyderabad_climate.txt',
output_file=f'../AquaCrop docs/AOT Compilation Removal/{file_prefix}_8_2_earlyplant.csv'
)
# EXERCISE 8.3 - fc
run_aquacrop_model(
crop_name='localpaddy',
planting_date='08/01',
sim_start_date = '2000/08/01',
sim_end_date = '2010/12/31',
soil_type='Paddy',
initial_water_content = field_capacity,
irrigation_management = rainfed,
field_management = bunds20,
weather_file='C:/Users/s10034cb/Dropbox (The University of Manchester)/Manchester Postdoc/aquacrop/aquacrop/data/hyderabad_climate.txt',
output_file=f'../AquaCrop docs/AOT Compilation Removal/{file_prefix}_8_3_fc.csv'
)
# EXERCISE 8.3 - 30%taw
run_aquacrop_model(
crop_name='localpaddy',
planting_date='08/01',
sim_start_date = '2000/08/01',
sim_end_date = '2010/12/31',
soil_type='Paddy',
initial_water_content = iwc30taw_2,
irrigation_management = rainfed,
field_management = bunds20,
weather_file='C:/Users/s10034cb/Dropbox (The University of Manchester)/Manchester Postdoc/aquacrop/aquacrop/data/hyderabad_climate.txt',
output_file=f'../AquaCrop docs/AOT Compilation Removal/{file_prefix}_8_3_30taw.csv'
)
# EXERCISE 8.3 - 75%taw
run_aquacrop_model(
crop_name='localpaddy',
planting_date='08/01',
sim_start_date = '2000/08/01',
sim_end_date = '2010/12/31',
soil_type='Paddy',
initial_water_content = iwc75taw_2,
irrigation_management = rainfed,
field_management = bunds20,
weather_file='C:/Users/s10034cb/Dropbox (The University of Manchester)/Manchester Postdoc/aquacrop/aquacrop/data/hyderabad_climate.txt',
output_file=f'../AquaCrop docs/AOT Compilation Removal/{file_prefix}_8_3_75taw.csv'
)
# EXERCISE 8.3 - wet_top
run_aquacrop_model(
crop_name='localpaddy',
planting_date='08/01',
sim_start_date = '2000/08/01',
sim_end_date = '2010/12/31',
soil_type='Paddy',
initial_water_content = wet_top,
irrigation_management = rainfed,
field_management = bunds20,
weather_file='C:/Users/s10034cb/Dropbox (The University of Manchester)/Manchester Postdoc/aquacrop/aquacrop/data/hyderabad_climate.txt',
output_file=f'../AquaCrop docs/AOT Compilation Removal/{file_prefix}_8_3_wetTop.csv'
)
# EXERCISE 8.7 - 1m gw
run_aquacrop_model(
crop_name='HydWheatGDD',
planting_date='11/01',
sim_start_date = '2000/09/01',
sim_end_date = '2010/12/31',
soil_type='ClayLoam',
initial_water_content = field_capacity,
irrigation_management = net_irr_8,
groundwater=groundwater_1m,
weather_file='C:/Users/s10034cb/Dropbox (The University of Manchester)/Manchester Postdoc/aquacrop/aquacrop/data/hyderabad_climate.txt',
output_file=f'../AquaCrop docs/AOT Compilation Removal/{file_prefix}_8_4_1m.csv'
)
# EXERCISE 8.7 - 2m gw
run_aquacrop_model(
crop_name='HydWheatGDD',
planting_date='11/01',
sim_start_date = '2000/09/01',
sim_end_date = '2010/12/31',
soil_type='ClayLoam',
initial_water_content = field_capacity,
irrigation_management = net_irr_8,
groundwater=groundwater_2m,
weather_file='C:/Users/s10034cb/Dropbox (The University of Manchester)/Manchester Postdoc/aquacrop/aquacrop/data/hyderabad_climate.txt',
output_file=f'../AquaCrop docs/AOT Compilation Removal/{file_prefix}_8_4_2m.csv'
)
# EXERCISE 9.1 - potato in brussels
run_aquacrop_model(
crop_name='PotatoLocalGDD',
planting_date='04/25',
sim_start_date = '1976/04/25',
sim_end_date = '2005/12/31',
soil_type='Loam',
initial_water_content = field_capacity,
irrigation_management = rainfed,
weather_file='C:/Users/s10034cb/Dropbox (The University of Manchester)/Manchester Postdoc/aquacrop/aquacrop/data/brussels_climate.txt',
output_file=f'../AquaCrop docs/AOT Compilation Removal/{file_prefix}_9_1.csv'
)
# EXERCISE 9.4 - net irri
run_aquacrop_model(
crop_name='PotatoLocalGDD',
planting_date='04/25',
sim_start_date = '1976/04/25',
sim_end_date = '2005/12/31',
soil_type='Loam',
initial_water_content = field_capacity,
irrigation_management = net_irr_9,
weather_file='C:/Users/s10034cb/Dropbox (The University of Manchester)/Manchester Postdoc/aquacrop/aquacrop/data/brussels_climate.txt',
output_file=f'../AquaCrop docs/AOT Compilation Removal/{file_prefix}_9_4.csv'
)
# EXERCISE 9.5 - irri schedules
run_aquacrop_model(
crop_name='PotatoLocalGDD',
planting_date='04/25',
sim_start_date = '1976/04/25',
sim_end_date = '2005/12/31',
soil_type='LoamySand',
initial_water_content = field_capacity,
irrigation_management = schedule,
weather_file='C:/Users/s10034cb/Dropbox (The University of Manchester)/Manchester Postdoc/aquacrop/aquacrop/data/brussels_climate.txt',
output_file=f'../AquaCrop docs/AOT Compilation Removal/{file_prefix}_9_5.csv',
initialise = True
)
# EXERCISE 9.6 - CC impact historical
run_aquacrop_model(
crop_name='PotatoLocalGDD',
planting_date='04/25',
sim_start_date = '1976/04/25',
sim_end_date = '2005/12/31',
soil_type='Loam',
initial_water_content = field_capacity,
irrigation_management = rainfed,
weather_file='C:/Users/s10034cb/Dropbox (The University of Manchester)/Manchester Postdoc/aquacrop/aquacrop/data/brussels_climate.txt',
output_file=f'../AquaCrop docs/AOT Compilation Removal/{file_prefix}_9_6_hist.csv',
initialise = True
)
# EXERCISE 9.6 - CC impact future
run_aquacrop_model(
crop_name='PotatoLocalGDD',
planting_date='04/25',
sim_start_date = '2041/04/25',
sim_end_date = '2070/12/31',
soil_type='Loam',
initial_water_content = field_capacity,
irrigation_management = rainfed,
weather_file='C:/Users/s10034cb/Dropbox (The University of Manchester)/Manchester Postdoc/aquacrop/aquacrop/data/brussels_future.txt',
output_file=f'../AquaCrop docs/AOT Compilation Removal/{file_prefix}_9_6_future.csv',
initialise = True
)
run_all_exercises('rmNumbaTwo')
#sns.set_theme(style="whitegrid") # Set a clean theme for the plots
# List of columns to plot
#columns = ['canopy_cover', 'biomass', 'harvest_index', 'z_root']
# Create separate plots for each column
# for col in columns:
# plt.figure(figsize=(6, 4)) # Create a new figure
# sns.lineplot(data=crop_growth, x='dap', y=col, color='blue')
# plt.xlabel('Days After Planting (dap)')
# plt.ylabel(col.replace('_', ' ').title()) # Format column name for the label
# plt.title(f'{col.replace("_", " ").title()} vs. DAP')
# plt.tight_layout()
# plt.show() # Show the plot