forked from hunkim/word-rnn-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
134 lines (122 loc) · 7.28 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from __future__ import print_function
import numpy as np
import tensorflow as tf
import argparse
import time
import os
from six.moves import cPickle
from utils import TextLoader
from model import Model
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default='data/tinyshakespeare',
help='data directory containing input.txt')
parser.add_argument('--input_encoding', type=str, default=None,
help='character encoding of input.txt, from https://docs.python.org/3/library/codecs.html#standard-encodings')
parser.add_argument('--log_dir', type=str, default='logs',
help='directory containing tensorboard logs')
parser.add_argument('--save_dir', type=str, default='save',
help='directory to store checkpointed models')
parser.add_argument('--rnn_size', type=int, default=256,
help='size of RNN hidden state')
parser.add_argument('--num_layers', type=int, default=2,
help='number of layers in the RNN')
parser.add_argument('--model', type=str, default='lstm',
help='rnn, gru, or lstm')
parser.add_argument('--batch_size', type=int, default=50,
help='minibatch size')
parser.add_argument('--seq_length', type=int, default=25,
help='RNN sequence length')
parser.add_argument('--num_epochs', type=int, default=50,
help='number of epochs')
parser.add_argument('--save_every', type=int, default=1000,
help='save frequency')
parser.add_argument('--grad_clip', type=float, default=5.,
help='clip gradients at this value')
parser.add_argument('--learning_rate', type=float, default=0.002,
help='learning rate')
parser.add_argument('--decay_rate', type=float, default=0.97,
help='decay rate for rmsprop')
parser.add_argument('--gpu_mem', type=float, default=0.666,
help='%% of gpu memory to be allocated to this process. Default is 66.6%%')
parser.add_argument('--init_from', type=str, default=None,
help="""continue training from saved model at this path. Path must contain files saved by previous training process:
'config.pkl' : configuration;
'words_vocab.pkl' : vocabulary definitions;
'checkpoint' : paths to model file(s) (created by tf).
Note: this file contains absolute paths, be careful when moving files around;
'model.ckpt-*' : file(s) with model definition (created by tf)
""")
args = parser.parse_args()
train(args)
def train(args):
data_loader = TextLoader(args.data_dir, args.batch_size, args.seq_length, args.input_encoding)
args.vocab_size = data_loader.vocab_size
# check compatibility if training is continued from previously saved model
if args.init_from is not None:
# check if all necessary files exist
assert os.path.isdir(args.init_from)," %s must be a path" % args.init_from
assert os.path.isfile(os.path.join(args.init_from,"config.pkl")),"config.pkl file does not exist in path %s"%args.init_from
assert os.path.isfile(os.path.join(args.init_from,"words_vocab.pkl")),"words_vocab.pkl.pkl file does not exist in path %s" % args.init_from
ckpt = tf.train.get_checkpoint_state(args.init_from)
assert ckpt,"No checkpoint found"
assert ckpt.model_checkpoint_path,"No model path found in checkpoint"
# open old config and check if models are compatible
with open(os.path.join(args.init_from, 'config.pkl'), 'rb') as f:
saved_model_args = cPickle.load(f)
need_be_same=["model","rnn_size","num_layers","seq_length"]
for checkme in need_be_same:
assert vars(saved_model_args)[checkme]==vars(args)[checkme],"Command line argument and saved model disagree on '%s' "%checkme
# open saved vocab/dict and check if vocabs/dicts are compatible
with open(os.path.join(args.init_from, 'words_vocab.pkl'), 'rb') as f:
saved_words, saved_vocab = cPickle.load(f)
assert saved_words==data_loader.words, "Data and loaded model disagree on word set!"
assert saved_vocab==data_loader.vocab, "Data and loaded model disagree on dictionary mappings!"
with open(os.path.join(args.save_dir, 'config.pkl'), 'wb') as f:
cPickle.dump(args, f)
with open(os.path.join(args.save_dir, 'words_vocab.pkl'), 'wb') as f:
cPickle.dump((data_loader.words, data_loader.vocab), f)
model = Model(args)
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(args.log_dir)
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_mem)
with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
train_writer.add_graph(sess.graph)
tf.global_variables_initializer().run()
saver = tf.train.Saver(tf.global_variables())
# restore model
if args.init_from is not None:
saver.restore(sess, ckpt.model_checkpoint_path)
for e in range(model.epoch_pointer.eval(), args.num_epochs):
sess.run(tf.assign(model.lr, args.learning_rate * (args.decay_rate ** e)))
data_loader.reset_batch_pointer()
state = sess.run(model.initial_state)
speed = 0
if args.init_from is None:
assign_op = model.epoch_pointer.assign(e)
sess.run(assign_op)
if args.init_from is not None:
data_loader.pointer = model.batch_pointer.eval()
args.init_from = None
for b in range(data_loader.pointer, data_loader.num_batches):
start = time.time()
x, y = data_loader.next_batch()
feed = {model.input_data: x, model.targets: y, model.initial_state: state,
model.batch_time: speed}
summary, train_loss, state, _, _ = sess.run([merged, model.cost, model.final_state,
model.train_op, model.inc_batch_pointer_op], feed)
train_writer.add_summary(summary, e * data_loader.num_batches + b)
speed = time.time() - start
if (e * data_loader.num_batches + b) % args.batch_size == 0:
print("{}/{} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \
.format(e * data_loader.num_batches + b,
args.num_epochs * data_loader.num_batches,
e, train_loss, speed))
if (e * data_loader.num_batches + b) % args.save_every == 0 \
or (e==args.num_epochs-1 and b == data_loader.num_batches-1): # save for the last result
checkpoint_path = os.path.join(args.save_dir, 'model.ckpt')
saver.save(sess, checkpoint_path, global_step = e * data_loader.num_batches + b)
print("model saved to {}".format(checkpoint_path))
train_writer.close()
if __name__ == '__main__':
main()