-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathrun_evol.py
123 lines (98 loc) · 5.14 KB
/
run_evol.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import time
import json
import asyncio
import argparse
from datasets import load_dataset
from src.generators import OpenRouterGenerator, VLLMGenerator
from src.evolvers import RecurrentEvolver
from src.analyzers import TrajectoryAnalyzer
from src.evaluator import FailureDetectorEvaluator, RewardModelEvaluator
from src.optimizers.evol_optimizer import EvolOptimizer
from src import AutoEvol
from os import getenv
def load_and_process_dataset(dataset_name, dev_set_size=5):
# Load the dataset from Hugging Face
dataset = load_dataset(dataset_name)
# Assuming the dataset has a 'train' split. Adjust if needed.
if 'train' not in dataset:
raise ValueError(f"The dataset {dataset_name} does not have a 'train' split.")
full_dataset = dataset['train']
# Shuffle the dataset
full_dataset = full_dataset.shuffle(seed=42)
# Ensure dev_set_size is not larger than the dataset
if dev_set_size > len(full_dataset):
raise ValueError(f"Specified dev set size ({dev_set_size}) is larger than the dataset size ({len(full_dataset)})")
full_filtered = []
for sample in full_dataset['conversations']:
for turn in sample:
if turn['from'] == 'system':
break
if turn['from'] == 'human':
full_filtered.append(turn['value'])
break
if dev_set_size != -1:
# Split the dataset
train_instructions = full_filtered[dev_set_size:]
dev_instructions = full_filtered[:dev_set_size]
return train_instructions, dev_instructions
else:
return full_filtered, []
async def save_results(results, output_file):
with open(output_file, 'w') as f:
json.dump(results, f, indent=2, ensure_ascii=False)
async def main():
parser = argparse.ArgumentParser(description="Run AutoEvol with specified parameters")
parser.add_argument("--dataset", required=True, help="Name of the dataset on Hugging Face")
parser.add_argument("--model", type=str, required=True, help="Model use to evol instructions.")
parser.add_argument("--generator", type=str, required=True, choices=['openrouter', 'vllm'], help="Type of generator to use.")
parser.add_argument("--batch_size", type=int, required=True, help="Batch size for processing")
parser.add_argument("--num_methods", type=int, required=True, help="Number of methods to use")
parser.add_argument("--max_concurrent_batches", type=int, required=True, help="Maximum number of concurrent batches")
parser.add_argument("--evolve_epoch", type=int, required=True, help="Maximum number of epoch for each instruction")
parser.add_argument("--output_file", type=str, required=True, help="Name of output file")
# Optional arguments
parser.add_argument("--dev_set_size", type=int, default=-1, help="Maximum samples for dev set. Use -1 for no dev set.")
parser.add_argument("--use_reward_model", action="store_true", help="Use reward model for evaluation")
args = parser.parse_args()
# Load and process the dataset
train_set, dev_set = load_and_process_dataset(args.dataset, args.dev_set_size)
generator = (
VLLMGenerator(model=args.model, base_url=getenv('VLLM_BACKEND') or 'http://localhost:8000/v1')
if args.generator == 'vllm'
else OpenRouterGenerator(model=args.model)
)
components = {
'generator': generator,
'evolver': RecurrentEvolver(generator),
'analyzer': TrajectoryAnalyzer(generator),
'evaluator': RewardModelEvaluator() if args.use_reward_model else FailureDetectorEvaluator(),
'dev_set': dev_set
}
components['optimizer'] = EvolOptimizer(generator, components['evaluator'])
auto_evol = AutoEvol(components)
print(f"Dataset: {args.dataset}")
if args.dev_set_size != -1:
print(f"Train set size: {len(train_set)}, Dev set size: {len(dev_set)}")
else:
print(f"Train set size: {len(train_set)}")
print(f"Batch size: {args.batch_size}")
print(f"Number of methods: {args.num_methods}")
print(f"Max concurrent batches: {args.max_concurrent_batches}")
start_time = time.time()
output_file = args.output_file
all_results = []
total_batches = (len(train_set) + args.batch_size - 1) // args.batch_size # Calculate total number of batches
for i in range(0, len(train_set), args.batch_size):
batch = train_set[i:i+args.batch_size]
batch_results = await auto_evol.run(batch, batch_size=args.batch_size, num_methods=args.num_methods, max_concurrent_batches=args.max_concurrent_batches, evolve_epoch=args.evolve_epoch)
all_results.extend(batch_results)
current_batch = i // args.batch_size + 1
print(f"Done batch {current_batch}/{total_batches}") # New print statement for batch progress
print(f"Batch {current_batch} completed. Saving results...")
await save_results(all_results, output_file)
end_time = time.time()
total_time = end_time - start_time
print(f"Total execution time: {total_time:.2f} seconds")
print(f"Final results saved to {output_file}")
if __name__ == "__main__":
asyncio.run(main())