forked from sachuverma/DataStructures-Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Binary Tree Postorder Traversal.cpp
78 lines (65 loc) · 1.4 KB
/
Binary Tree Postorder Traversal.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
/*
Binary Tree Postorder Traversal
===============================
Given the root of a binary tree, return the postorder traversal of its nodes' values.
Example 1:
Input: root = [1,null,2,3]
Output: [3,2,1]
Example 2:
Input: root = []
Output: []
Example 3:
Input: root = [1]
Output: [1]
Example 4:
Input: root = [1,2]
Output: [2,1]
Example 5:
Input: root = [1,null,2]
Output: [2,1]
Constraints:
The number of the nodes in the tree is in the range [0, 100].
-100 <= Node.val <= 100
Follow up:
Recursive solution is trivial, could you do it iteratively?
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution
{
public:
vector<int> postorderTraversal(TreeNode *root)
{
vector<int> ans;
auto curr = root;
stack<TreeNode *> st, ss;
st.push(root);
while (st.size())
{
curr = st.top();
st.pop();
if (!curr)
break;
ss.push(curr);
if (curr->left)
st.push(curr->left);
if (curr->right)
st.push(curr->right);
}
while (ss.size())
{
ans.push_back(ss.top()->val);
ss.pop();
}
return ans;
}
};