-
Notifications
You must be signed in to change notification settings - Fork 17
/
mnist.py
181 lines (157 loc) · 6.65 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
import time
import os
class Net(nn.Module):
use_bn = True
use_gp = False
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, padding=0,bias=not self.use_bn)
if self.use_bn:
self.bn = nn.BatchNorm2d(32);
self.conv2 = nn.Conv2d(32, 64, 3, padding=0)
if self.use_gp:
self.fc1 = nn.Linear(64, 16)
self.fc2 = nn.Linear(16, 10)
else:
self.fc1 = nn.Linear(5*5*64, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
if self.use_bn:
x = self.bn(x)
x = F.relu_(x)
x = F.max_pool2d(x, 2)
x = self.conv2(x)
if self.use_gp:
x = F.adaptive_avg_pool2d(x,(1,1))
else:
x = F.max_pool2d(x, 2)
x = F.relu(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
output = self.fc2(x)
return output
def train(args, model, device, train_loader, optimizer, epoch,profile):
start = time.time()
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
def single_run(d,t):
data, target = d.to(device), t.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output,target)
loss.backward()
optimizer.step()
return loss.item()
if profile and epoch == 1 and batch_idx == 5:
with torch.ocl.profile(device,profile):
loss = single_run(data,target)
else:
loss = single_run(data,target)
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss))
if args.dry_run:
break
end = time.time()
print("Epoch in %5.1fs" % (end-start))
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data_dev = data.to(device)
target_dev = target.to(device)
output = model(data_dev)
test_loss += F.cross_entropy(output,target_dev, reduction='sum').item() # sum up batch loss
pred = output.to('cpu').argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=5, metavar='N',
help='number of epochs to train (default: 14)')
parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
help='learning rate (default: 1.0)')
parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
help='Learning rate step gamma (default: 0.7)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--profile',type=str,default=None,
help='Save profiling log for OCL to file')
parser.add_argument('--dry-run', action='store_true', default=False,
help='quickly check a single pass')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
parser.add_argument('--model',default='conv',help ='Model type conv, vit')
parser.add_argument('--device',default='cpu')
args = parser.parse_args()
torch.manual_seed(args.seed)
device = args.device
if device.find('ocl')==0 or device.find('privateuseone') == 0:
import pytorch_ocl
if args.profile:
torch.ocl.enable_profiling(device)
if device.find('xpu')==0:
import intel_extension_for_pytorch
train_kwargs = {'batch_size': args.batch_size}
test_kwargs = {'batch_size': args.test_batch_size}
if device!='cpu':
cuda_kwargs = {'num_workers': 1,
'shuffle': True}
train_kwargs.update(cuda_kwargs)
test_kwargs.update(cuda_kwargs)
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
dataset1 = datasets.MNIST('../data', train=True, download=True,
transform=transform)
dataset2 = datasets.MNIST('../data', train=False,
transform=transform)
train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs)
test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)
print("Using device:",device)
if args.model == 'conv':
model = Net().to(device)
elif args.model == 'vit':
from vit_pytorch import ViT
model = ViT(image_size=28, patch_size=7, num_classes=10, channels=1,
dim=64, depth=6, heads=8, mlp_dim=128)
model.to(device)
else:
raise Exception("Unsupported model")
optimizer = optim.Adam(model.parameters(), lr=args.lr)
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch,args.profile)
test(model, device, test_loader)
scheduler.step()
if args.save_model:
torch.save(model.to('cpu').state_dict(), "mnist_cnn.pt")
if __name__ == '__main__':
main()
print("Done");