You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi, thank you for this excellent software. I have stable dream fusion working except when I run it with DeepFloyd-IF guidance. It starts to run but then errors out. It is probably a problem with my environment but I'm not sure how to fix it.
A mixture of fp16 and non-fp16 filenames will be loaded.
Loaded fp16 filenames:
[safety_checker/model.fp16.safetensors, text_encoder/model.fp16-00001-of-00002.safetensors, text_encoder/model.fp16-00002-of-00002.safetensors, unet/diffusion_pytorch_model.fp16.safetensors]
Loaded non-fp16 filenames:
[watermarker/diffusion_pytorch_model.safetensors
If this behavior is not expected, please check your folder structure.
Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 3.76it/s]
Loading pipeline components...: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 3.91it/s]
[INFO] loaded DeepFloyd IF-I-XL!
Traceback (most recent call last):
File "/workspace/main.py", line 396, in
trainer = Trainer(' '.join(sys.argv), 'df', opt, model, guidance, device=device, workspace=opt.workspace, optimizer=optimizer, ema_decay=0.95, fp16=opt.fp16, lr_scheduler=scheduler, use_checkpoint=opt.ckpt, scheduler_update_every_step=True)
File "/workspace/nerf/utils.py", line 263, in init
self.prepare_embeddings()
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/workspace/nerf/utils.py", line 366, in prepare_embeddings
self.embeddings['IF']['default'] = self.guidance['IF'].get_text_embeds([self.opt.text])
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/workspace/guidance/if_utils.py", line 68, in get_text_embeds
embeddings = self.text_encoder(inputs.input_ids.to(self.device))[0]
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/transformers/models/t5/modeling_t5.py", line 1964, in forward
encoder_outputs = self.encoder(
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/transformers/models/t5/modeling_t5.py", line 1123, in forward
layer_outputs = layer_module(
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/transformers/models/t5/modeling_t5.py", line 695, in forward
self_attention_outputs = self.layer[0](
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/transformers/models/t5/modeling_t5.py", line 601, in forward
normed_hidden_states = self.layer_norm(hidden_states)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/apex/normalization/fused_layer_norm.py", line 386, in forward
return fused_rms_norm_affine(input, self.weight, self.normalized_shape, self.eps)
File "/usr/local/lib/python3.10/dist-packages/apex/normalization/fused_layer_norm.py", line 189, in fused_rms_norm_affine
return FusedRMSNormAffineFunction.apply(*args)
File "/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py", line 506, in apply
return super().apply(*args, **kwargs) # type: ignore[misc]
File "/usr/local/lib/python3.10/dist-packages/apex/normalization/fused_layer_norm.py", line 69, in forward
output, invvar = fused_layer_norm_cuda.rms_forward_affine(
RuntimeError: expected scalar type Float but found Half
Exception ignored in: <function Trainer.del at 0x7f236c60acb0>
Traceback (most recent call last):
File "/workspace/nerf/utils.py", line 424, in del
if self.log_ptr:
AttributeError: 'Trainer' object has no attribute 'log_ptr'
Steps to Reproduce
python main.py --text "a hamburger" --workspace trial -O --IF
Expected Behavior
No error
Environment
Running from docker container: FROM nvcr.io/nvidia/pytorch:23.06-py3
Python 3.10.6
PyTorch 2.1.0
CUDA Version: 12.2
GPU: NVIDIA GeForce RTX 3090
The text was updated successfully, but these errors were encountered:
Description
Hi, thank you for this excellent software. I have stable dream fusion working except when I run it with DeepFloyd-IF guidance. It starts to run but then errors out. It is probably a problem with my environment but I'm not sure how to fix it.
Thank you in advance,
root@d8ac8ab95a3b:/workspace# python main.py --text "a hamburger" --workspace trial -O --IF
NOTE! Installing ujson may make loading annotations faster.
Namespace(file=None, text='a hamburger', negative='', O=True, O2=False, test=False, six_views=False, eval_interval=1, test_interval=100, workspace='trial', seed=None, image=None, image_config=None, known_view_interval=4, IF=True, guidance=['IF'], guidance_scale=100, save_mesh=False, mcubes_resolution=256, decimate_target=50000.0, dmtet=False, tet_grid_size=128, init_with='', lock_geo=False, perpneg=False, negative_w=-2, front_decay_factor=2, side_decay_factor=10, iters=10000, lr=0.001, ckpt='latest', cuda_ray=True, taichi_ray=False, max_steps=1024, num_steps=64, upsample_steps=32, update_extra_interval=16, max_ray_batch=4096, latent_iter_ratio=0, albedo_iter_ratio=0, min_ambient_ratio=0.1, textureless_ratio=0.2, jitter_pose=False, jitter_center=0.2, jitter_target=0.2, jitter_up=0.02, uniform_sphere_rate=0, grad_clip=-1, grad_clip_rgb=-1, bg_radius=1.4, density_activation='exp', density_thresh=10, blob_density=5, blob_radius=0.2, backbone='grid', optim='adan', sd_version='2.1', hf_key=None, fp16=True, vram_O=False, w=64, h=64, known_view_scale=1.5, known_view_noise_scale=0.002, dmtet_reso_scale=8, batch_size=1, bound=1, dt_gamma=0, min_near=0.01, radius_range=[3.0, 3.5], theta_range=[45, 105], phi_range=[-180, 180], fovy_range=[10, 30], default_radius=3.2, default_polar=90, default_azimuth=0, default_fovy=20, progressive_view=False, progressive_view_init_ratio=0.2, progressive_level=False, angle_overhead=30, angle_front=60, t_range=[0.02, 0.98], dont_override_stuff=False, lambda_entropy=0.001, lambda_opacity=0, lambda_orient=0.01, lambda_tv=0, lambda_wd=0, lambda_mesh_normal=0.5, lambda_mesh_laplacian=0.5, lambda_guidance=1, lambda_rgb=1000, lambda_mask=500, lambda_normal=0, lambda_depth=10, lambda_2d_normal_smooth=0, lambda_3d_normal_smooth=0, save_guidance=False, save_guidance_interval=10, gui=False, W=800, H=800, radius=5, fovy=20, light_theta=60, light_phi=0, max_spp=1, zero123_config='./pretrained/zero123/sd-objaverse-finetune-c_concat-256.yaml', zero123_ckpt='pretrained/zero123/zero123-xl.ckpt', zero123_grad_scale='angle', dataset_size_train=100, dataset_size_valid=8, dataset_size_test=100, exp_start_iter=0, exp_end_iter=10000, images=None, ref_radii=[], ref_polars=[], ref_azimuths=[], zero123_ws=[], default_zero123_w=1)
NeRFNetwork(
(encoder): GridEncoder: input_dim=3 num_levels=16 level_dim=2 resolution=16 -> 2048 per_level_scale=1.3819 params=(6098120, 2) gridtype=hash align_corners=False interpolation=smoothstep
(sigma_net): MLP(
(net): ModuleList(
(0): Linear(in_features=32, out_features=64, bias=True)
(1): Linear(in_features=64, out_features=64, bias=True)
(2): Linear(in_features=64, out_features=4, bias=True)
)
)
(encoder_bg): FreqEncoder: input_dim=3 degree=6 output_dim=39
(bg_net): MLP(
(net): ModuleList(
(0): Linear(in_features=39, out_features=32, bias=True)
(1): Linear(in_features=32, out_features=3, bias=True)
)
)
)
[INFO] loading DeepFloyd IF-I-XL...
A mixture of fp16 and non-fp16 filenames will be loaded.
Loaded fp16 filenames:
[safety_checker/model.fp16.safetensors, text_encoder/model.fp16-00001-of-00002.safetensors, text_encoder/model.fp16-00002-of-00002.safetensors, unet/diffusion_pytorch_model.fp16.safetensors]
Loaded non-fp16 filenames:
[watermarker/diffusion_pytorch_model.safetensors
If this behavior is not expected, please check your folder structure.
Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 3.76it/s]
Loading pipeline components...: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 3.91it/s]
[INFO] loaded DeepFloyd IF-I-XL!
Traceback (most recent call last):
File "/workspace/main.py", line 396, in
trainer = Trainer(' '.join(sys.argv), 'df', opt, model, guidance, device=device, workspace=opt.workspace, optimizer=optimizer, ema_decay=0.95, fp16=opt.fp16, lr_scheduler=scheduler, use_checkpoint=opt.ckpt, scheduler_update_every_step=True)
File "/workspace/nerf/utils.py", line 263, in init
self.prepare_embeddings()
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/workspace/nerf/utils.py", line 366, in prepare_embeddings
self.embeddings['IF']['default'] = self.guidance['IF'].get_text_embeds([self.opt.text])
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/workspace/guidance/if_utils.py", line 68, in get_text_embeds
embeddings = self.text_encoder(inputs.input_ids.to(self.device))[0]
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/transformers/models/t5/modeling_t5.py", line 1964, in forward
encoder_outputs = self.encoder(
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/transformers/models/t5/modeling_t5.py", line 1123, in forward
layer_outputs = layer_module(
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/transformers/models/t5/modeling_t5.py", line 695, in forward
self_attention_outputs = self.layer[0](
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/transformers/models/t5/modeling_t5.py", line 601, in forward
normed_hidden_states = self.layer_norm(hidden_states)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/apex/normalization/fused_layer_norm.py", line 386, in forward
return fused_rms_norm_affine(input, self.weight, self.normalized_shape, self.eps)
File "/usr/local/lib/python3.10/dist-packages/apex/normalization/fused_layer_norm.py", line 189, in fused_rms_norm_affine
return FusedRMSNormAffineFunction.apply(*args)
File "/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py", line 506, in apply
return super().apply(*args, **kwargs) # type: ignore[misc]
File "/usr/local/lib/python3.10/dist-packages/apex/normalization/fused_layer_norm.py", line 69, in forward
output, invvar = fused_layer_norm_cuda.rms_forward_affine(
RuntimeError: expected scalar type Float but found Half
Exception ignored in: <function Trainer.del at 0x7f236c60acb0>
Traceback (most recent call last):
File "/workspace/nerf/utils.py", line 424, in del
if self.log_ptr:
AttributeError: 'Trainer' object has no attribute 'log_ptr'
Steps to Reproduce
python main.py --text "a hamburger" --workspace trial -O --IF
Expected Behavior
No error
Environment
Running from docker container: FROM nvcr.io/nvidia/pytorch:23.06-py3
Python 3.10.6
PyTorch 2.1.0
CUDA Version: 12.2
GPU: NVIDIA GeForce RTX 3090
The text was updated successfully, but these errors were encountered: