-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluate-chroma-decoder
executable file
·561 lines (475 loc) · 21.4 KB
/
evaluate-chroma-decoder
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
#!/usr/bin/python3
# Optimise filter configurations for ld-chroma-decoder using a genetic
# algorithm. Performance is evaluated by encoding test material with
# ld-chroma-encoder and measuring the similarity of the decoded result using
# SSIM.
# XXX Try generating an NTSC 3D FFT filter
import PIL.Image
import PIL.ImageDraw
import hashlib
import logging
import os
import random
import statistics
import sys
import time
from testvideos import *
logging.basicConfig(level=logging.INFO)
testcases = get_testcases()
"""
We represent threshold values 0.0-1.0 as integers from 0-100.
Grid sizes:
transform3d: 8 * 32 * ((16 / 8) + 1) = 768
transform2d: 16 * ((32 / 8) + 1) = 80
"""
# transform2d:
THRESHOLDS_Z = 1
THRESHOLDS_Y = 16
TILE_X = 32
# transform3d:
THRESHOLDS_Z = 8
THRESHOLDS_Y = 32
TILE_X = 16
THRESHOLDS_X = (TILE_X // 8) + 1
def cell(x, y, z):
return (((z * THRESHOLDS_Y) + y) * THRESHOLDS_X) + x
def clamp_cell(v):
return max(0, min(100, v))
THRESHOLDS_SIZE = THRESHOLDS_Z * THRESHOLDS_Y * THRESHOLDS_X
QUANTUM = 5
POPULATION_SIZE = 50
# Normally:
NUM_PREVIOUS_RANDOM = 0
# XXX This is really the same as is_resurrection (just without requiring existing scores)...
# After changing the set of tests:
#NUM_PREVIOUS_RANDOM = POPULATION_SIZE
NUM_CHILDREN = 1
# For experimentation:
#USE_TESTCASES = ["vqeg-mobilecalendar"]
# Small set for initial exploration:
#USE_TESTCASES = ["lavfi-pal75bars", "vqeg-mobilecalendar", "vqeg-harp", "ldv-shields", "ldv-stockholm"]
# Medium 625-line set:
#USE_TESTCASES = [
# "lavfi-magenta", "lavfi-testsrc", "lavfi-pal75bars",
# "vqeg-tree", "vqeg-barcelona", "vqeg-harp", "vqeg-movinggraphic", "vqeg-canoavalsesia",
# "vqeg-f1car", "vqeg-fries", "vqeg-horizontalscrolling", "vqeg-rugby", "vqeg-mobilecalendar",
# "ldv-parkrun", "ldv-shields", "ldv-stockholm",
# ]
# Complete set:
USE_TESTCASES = sorted(testcases.keys())
# RNGs for creating random individuals, and making evolutionary choices.
# (The idea being that we cache the results of evaluating individuals, so
# generating the same random individuals saves some effort.)
create_random = random.Random(42)
choose_random = random.Random(73)
# Directory containing a cache of the individuals we've tried so far
hof_dir = os.path.join(cache_dir, "hof3d")
os.makedirs(hof_dir, exist_ok=True)
class Individual:
def __init__(self, source, arg=None):
# thresholds are immutable once an Individual is created.
if source == "constant":
self.thresholds = THRESHOLDS_SIZE * [arg]
elif source == "random":
self.thresholds = [create_random.randint(0, 100 / QUANTUM) * QUANTUM for i in range(THRESHOLDS_SIZE)]
elif source == "copy":
self.thresholds = arg
else:
raise ValueError("bad source: " + source)
# Hash the thresholds to generate a unique filename
self.hash = hashlib.sha256(" ".join(map(str, self.thresholds)).encode("UTF-8")).hexdigest()
self.thresholds_name = os.path.join(hof_dir, self.hash + ".thresholds")
self.scores_name = os.path.join(hof_dir, self.hash + ".scores")
self.scores = None
self.total_score = None
def __repr__(self):
return "[%s]" % (",".join(map(str, self.thresholds)))
def write_thresholds(self):
with open(self.thresholds_name + ".new", "w") as f:
for z in range(THRESHOLDS_Z):
for y in range(THRESHOLDS_Y):
for x in range(THRESHOLDS_X):
f.write("%.02f " % (self.thresholds[cell(x, y, z)] * 0.01))
f.write("\n")
f.write("\n")
os.rename(self.thresholds_name + ".new", self.thresholds_name)
def read_scores(self):
self.scores = {}
try:
with open(self.scores_name) as f:
for line in f.readlines():
name, score = line.rstrip().split(",")
self.scores[name] = float(score)
except IOError:
pass
def update_total(self):
"""Compute the total score as the product of all the scores we're currently using.
Note this will give different results as the set of testcases changes,
and it assumes there are scores for all current testcases."""
self.total_score = 1.0
for testcase_name in USE_TESTCASES:
self.total_score *= self.scores[testcase_name]
def write_scores(self):
with open(self.scores_name + ".new", "w") as f:
for name, score in sorted(self.scores.items()):
f.write("%s,%f\n" % (name, score))
os.rename(self.scores_name + ".new", self.scores_name)
def load_individual(filename, same_testcases=False):
if not filename.endswith(".thresholds"):
return None
# Load the thresholds, checking they're the right size
with open(os.path.join(hof_dir, filename)) as f:
thresholds = [int(float(s) * 100) for s in f.read().rstrip().split()]
if len(thresholds) != THRESHOLDS_SIZE:
return None
# Create the individual
ind = Individual("copy", thresholds)
if ind.hash != filename[:-len(".thresholds")]:
# This shouldn't happen, but if it does (probably due to a leftover
# file from earlier development), ignore it.
return None
ind.read_scores()
if same_testcases:
# Check we have scores for all the testcases we're using.
for testcase_name in USE_TESTCASES:
if testcase_name not in ind.scores:
return None
return ind
def show_stats():
births = []
mutations = {}
for filename in sorted(os.listdir(hof_dir)):
# We only want individuals with the current set of testcases
ind = load_individual(filename, same_testcases=True)
if ind is None:
continue
logging.info("reading %s", filename)
birth = ind.scores.get("_birth")
firstscore = ind.scores.get("_firstscore")
parentscore = ind.scores.get("_parentscore")
mutation = ind.scores.get("_mutation")
delta = ind.scores.get("_delta", 0)
radius = ind.scores.get("_radius", 0)
if birth is not None:
births.append((birth, ind))
if (mutation is not None) and (firstscore is not None) and (parentscore is not None):
mutation = int(mutation)
delta = int(delta)
if mutation < 6:
key = "plane" + ("+%d" % delta if delta > 0 else "%d" % delta)
elif mutation < 9:
key = ("radius%d" % radius) + ("+%d" % delta if delta > 0 else "%d" % delta)
elif mutation == 9:
key = "crossover"
elif mutation == 10:
key = "crossover-radius%d" % radius
else:
key = "?"
counts = mutations.setdefault(key, [0, 0])
if firstscore > parentscore:
counts[0] += 1
counts[1] += 1
births.sort()
# Show the series of best results found over time.
logging.info("writing result_history.png")
best_inds = [births[0][1]]
last_time = 0.0
best_score = 0.0
for birth, ind in births:
ind.update_total()
# It needs to be the best score seen so far...
if ind.total_score < best_score:
continue
best_score = ind.total_score
# And it needs to be at least 30m after the last one reported.
if (birth - last_time) < (30 * 60):
continue
last_time = birth
best_inds.append(ind)
logging.info("%d inds", len(best_inds))
COMPLEX_X = TILE_X // 2
img_w = (len(best_inds) * (COMPLEX_X + 1)) + 1
img_h = ((THRESHOLDS_Y + 1) * THRESHOLDS_Z) + 1
img = PIL.Image.new("RGB", (img_w, img_h))
draw = PIL.ImageDraw.Draw(img)
# Plot to match ld-chroma-decoder's FFT visualisation in layout; the thresholds array
# covers XTILE/8 <= x <= XTILE/4 (and reflects around XTILE/4)
off_x = TILE_X // 8
for i, ind in enumerate(best_inds):
tl_x = (COMPLEX_X + 1) * i
for z in range(THRESHOLDS_Z):
tl_y = (THRESHOLDS_Y + 1) * z
draw.rectangle([(tl_x, tl_y), (tl_x + COMPLEX_X + 1, tl_y + THRESHOLDS_Y + 1)], outline=0x004000, width=0)
for y in range(THRESHOLDS_Y):
for x in range(THRESHOLDS_X):
# Invert the value so black = always chroma, white = always luma
v = 255 - int((ind.thresholds[cell(x, y, z)] / 100.0) * 255)
img.putpixel((tl_x + 1 + x + off_x, tl_y + y + 1), (v << 16) | (v << 8) | v)
# And the reflection since the same threshold is used for both:
img.putpixel((tl_x + 1 + ((TILE_X // 2) - (x + off_x)), tl_y + y + 1), (v << 16) | (v << 8) | v)
img.save("result_history.png")
logging.info("writing births_scores.csv")
with open("births_scores.csv", "w") as f:
for birth, ind in births:
f.write("%f,%f\n" % (birth, ind.total_score))
logging.info("writing mutations.csv")
with open("mutations.csv", "w") as f:
for mutation, counts in sorted(mutations.items()):
f.write("%s,%d,%d\n" % (mutation, counts[0], counts[1]))
if sys.argv[1:] == ["--stats"]:
show_stats()
sys.exit(0)
# Start with a known-fairly-good configuration.
population = [Individual("constant", 45)]
def insert_individual(new_population, ind):
"""Returns True if inserted, False if it was already there."""
for other in new_population:
if other.hash == ind.hash:
return False
new_population.append(ind)
return True
# And some that were successfully evolved in the past...
# transform2d:
WINNERS2D = [
"26ed6bbcbde9cbd3bdc0a1ec486ed577fabf9bf30ba20c2fb6f73af238fc172a.thresholds",
"cbe73a8e39276df08e30f7a2f5b1cba6ad1851047d4cbadd738e2a959aaa5565.thresholds",
]
# transform3d:
WINNERS = [
# trained with small set
"0d34daf137fba85442f13fd0aec0e0443e95936f65dad6205ae085346a8f282f.thresholds",
"e899cc440d4a31b2c050d087f6327fbdf18086e7e3e9623855d827ffa40dac8b.thresholds",
"666702d506a3be1ca90945f8a6df29917f27aebbca67b656d852629c6a4592a8.thresholds",
"8e2571c0a52ad1b677de895200c1d686a3c5ad5f484729d20dadb6183f090be9.thresholds",
"6e26c6260a86e661a833ff973c6224c56001ceed15c02d20fd67cd64c90dfbc7.thresholds",
"f9b046c8d30ce9fcdb320d9abd1057114ad56aa9ae56c67bea48ea9df972fd9d.thresholds",
# trained with medium set
"0c8bff696dd57e425435254a0a986dd87d54299e1c37e23a121a4ebf9936058b.thresholds",
"330072406ae98ef88ad716916f01380a736f2fdfe932fe5f3d70e9e7554a8c44.thresholds",
"6980dacead6876acb187e5795eaeda88536748e9f9c3b96c1d062e9376144e70.thresholds",
"2c38d1c2f93df0df8c50408982b49de2e3c72a51d7ece6ff2f426b1bfd7baacf.thresholds",
"5081649f3b1c9ad6192f49799d9b70f187fddd698d42daa274154ca91887fe6e.thresholds",
"66a2a936fb27ed2c76a942f70c46fa7865ef57c71e6d1cc4c00e533d56e7c23f.thresholds",
"eb10fd53e3edc6e821859d95c8c42731530f03bfc2e3050f66e257b99844178c.thresholds",
"05490bfd61cedec6f97f1b451680bfe440521e439cd7301fedbc946e3f25bc53.thresholds",
]
for filename in WINNERS:
ind = load_individual(filename)
if ind is None:
continue
logging.info("Using previous winner HoF individual %s", ind.hash)
insert_individual(population, ind)
# Find previously-saved configurations that have the set of testcases we're
# using, so we implicitly continue from a previous run. The cost of including
# these is minimal because we don't have to run any new tests, so we include
# all of them in the first generation.
# We have to sort here so that the shuffle below is deterministic.
hof_filenames = sorted(os.listdir(hof_dir))
for filename in hof_filenames:
ind = load_individual(filename, same_testcases=True)
if ind is None:
continue
logging.info("Using complete HoF individual %s", ind.hash)
insert_individual(population, ind)
# Randomly select at most POPULATION_SIZE previous configurations (that don't
# have a complete set of tests already), for variety. This means you can
# continue with a different set of tests.
choose_random.shuffle(hof_filenames, choose_random.random)
count = 0
for filename in hof_filenames:
if count >= NUM_PREVIOUS_RANDOM:
break
ind = load_individual(filename)
if ind is None:
continue
if insert_individual(population, ind):
logging.info("Using random HoF individual %s", ind.hash)
count += 1
generation = 0
while True:
logging.info("-" * 70)
logging.info("Generation %d, population %d", generation, len(population))
# Read in existing scores
for ind in population:
ind.read_scores()
# Evaluate all the individuals against all the testcases.
# Since the testcase data is large (several gigabytes), evaluate all
# individuals against each testcase before moving on to the next testcase.
for testcase_name in USE_TESTCASES:
logging.info("Evaluating with %s", testcase_name)
testcase = testcases[testcase_name]
for ind in population:
if testcase_name in ind.scores:
#logging.info("Already done individual %s - score %f", ind.hash, ind.scores[testcase_name])
continue
ind.write_thresholds()
decoder_args = ["-f", "transform3d", "--transform-thresholds", ind.thresholds_name]
psnr, ssim = evaluate(testcase, decoder_args)
logging.info("Testcase %s individual %s PSNR %f SSIM %f", testcase_name, ind.hash, psnr, ssim)
ind.scores[testcase_name] = ssim
ind.write_scores()
# Periodically resurrect a set of random older individuals for variety
is_resurrection = (generation % 50) == 0
resurrected = []
if is_resurrection:
hof_filenames = os.listdir(hof_dir)
choose_random.shuffle(hof_filenames, choose_random.random)
for filename in hof_filenames:
ind = load_individual(filename, same_testcases=True)
if ind is None:
continue
insert_individual(resurrected, ind)
if len(resurrected) >= POPULATION_SIZE:
break
# Update total scores
for ind in population + resurrected:
ind.update_total()
# Record total score if this is the first time we've done it
if "_firstscore" not in ind.scores:
# XXX Hack because I introduced this partway through a run
if "_birth" not in ind.scores:
ind.scores["_birth"] = os.stat(ind.scores_name).st_mtime
ind.scores["_firstscore"] = ind.total_score
ind.write_scores()
# Sort the best individuals first and trim to max size
population.sort(key=lambda ind: -ind.total_score)
population = population[:POPULATION_SIZE]
# Add in the resurrected individuals
if is_resurrection:
for ind in resurrected:
if insert_individual(population, ind):
logging.info("resurrecting %s", ind.hash)
population.sort(key=lambda ind: -ind.total_score)
# Show stats
logging.info("Generation %d leaderboard:", generation)
for ind in population:
logging.info("- %s - total_score %f", ind.hash, ind.total_score)
total_scores = [ind.total_score for ind in population]
logging.info("Generation %d: median score %f, best score %f", generation,
statistics.median(total_scores), max(total_scores))
# Generate new children
new_population = population[:]
want_children = POPULATION_SIZE if is_resurrection else NUM_CHILDREN
while len(new_population) < len(population) + want_children:
# Choose a parent -- usually the best one
# XXX This is more an SA than GA approach...
if choose_random.random() < 0.8:
parent = population[0]
else:
parent = choose_random.choice(population)
logging.info("child mutating from %s", parent.hash)
# Mutate
# XXX These are all conservative changes -- it may be better to have a "set
# to random" mutation to avoid getting stuck in a local maximum. (But that
# may not be a problem depending on what the search space looks like...)
thresholds = parent.thresholds[:]
mutation = choose_random.choice([0, 6, 6, 6, 9, 10])
if is_resurrection:
mutation = 10
delta = 0
radius = 0
if mutation == 0:
# Raise/lower plane
want_x, want_y, want_z = -1, -1, -1
delta = QUANTUM * choose_random.choice([-1, 1])
axis = choose_random.randrange(3)
if axis == 0:
want_x = choose_random.randrange(THRESHOLDS_X)
elif axis == 1:
want_y = choose_random.randrange(THRESHOLDS_Y)
elif axis == 2:
want_z = choose_random.randrange(THRESHOLDS_Z)
logging.info("raise plane %d,%d,%d by %d", want_x, want_y, want_z, delta)
for z in range(THRESHOLDS_Z):
if want_z != -1 and want_z != z:
continue
for y in range(THRESHOLDS_Y):
if want_y != -1 and want_y != y:
continue
for x in range(THRESHOLDS_X):
if want_x != -1 and want_x != x:
continue
idx = cell(x, y, z)
thresholds[idx] = clamp_cell(thresholds[idx] + delta)
elif mutation == 6:
# Raise/lower radius
delta = QUANTUM * choose_random.choice([-3, -2, -2, -1, -1, -1, 1, 1, 1, 2, 2, 3])
cx = choose_random.randrange(THRESHOLDS_X)
cy = choose_random.randrange(THRESHOLDS_Y)
cz = choose_random.randrange(THRESHOLDS_Z)
radius = choose_random.randrange(min(THRESHOLDS_X, THRESHOLDS_Y, THRESHOLDS_Z))
logging.info("raise radius %d around %d,%d,%d by %d", radius, cx, cy, cz, delta)
r2 = radius * radius
for z in range(THRESHOLDS_Z):
for y in range(THRESHOLDS_Y):
for x in range(THRESHOLDS_X):
if ((cy - y) * (cy - y)) + ((cx - x) * (cx - x)) + ((cz - z) * (cz - z)) < r2:
idx = cell(x, y, z)
thresholds[idx] = clamp_cell(thresholds[idx] + delta)
elif mutation == 9:
# Plane crossover
# Select a second parent
parent2 = parent
if len(population) > 1:
while parent.hash == parent2.hash:
parent2 = choose_random.choice(population)
if choose_random.random() > 0.5:
parent, parent2 = parent2, parent
# Select a random plane
x_split, y_split, z_split = 0, 0, 0
axis = choose_random.randrange(3)
if axis == 0:
x_split = choose_random.randint(1, THRESHOLDS_X - 1)
elif axis == 1:
y_split = choose_random.randint(1, THRESHOLDS_Y - 1)
elif axis == 2:
z_split = choose_random.randint(1, THRESHOLDS_Z - 1)
logging.info("crossover between %s and %s at %d,%d,%d", parent.hash, parent2.hash, x_split, y_split, z_split)
# Join the two halves together
for z in range(THRESHOLDS_Z):
for y in range(THRESHOLDS_Y):
for x in range(THRESHOLDS_X):
idx = cell(x, y, z)
if x >= x_split and y >= y_split and z >= z_split:
thresholds[idx] = parent.thresholds[idx]
else:
thresholds[idx] = parent2.thresholds[idx]
elif mutation == 10:
# Radius crossover
# Select a second parent
parent2 = parent
if len(population) > 1:
while parent.hash == parent2.hash:
parent2 = choose_random.choice(population)
# Select a radius
cx = choose_random.randrange(THRESHOLDS_X)
cy = choose_random.randrange(THRESHOLDS_Y)
cz = choose_random.randrange(THRESHOLDS_Z)
radius = choose_random.randrange((THRESHOLDS_X + THRESHOLDS_Y + THRESHOLDS_Z) // 3)
logging.info("crossover-radius between %s and %s around %d,%d,%d radius %d",
parent.hash, parent2.hash, cx, cy, cz, radius)
# Insert the patch from parent2
r2 = radius * radius
for z in range(THRESHOLDS_Z):
for y in range(THRESHOLDS_Y):
for x in range(THRESHOLDS_X):
idx = cell(x, y, z)
if ((cy - y) * (cy - y)) + ((cx - x) * (cx - x)) + ((cz - z) * (cz - z)) < r2:
thresholds[idx] = parent2.thresholds[idx]
else:
raise ValueError("unknown mutation %d" % mutation)
# Insert the new child, if it doesn't duplicate one we already have
child = Individual("copy", thresholds)
insert_individual(new_population, child)
# Record information about the child's creation, for later stats
child.read_scores()
if "_birth" not in child.scores:
child.scores["_birth"] = time.time()
child.scores["_parentscore"] = parent.total_score
child.scores["_bestscore"] = population[0].total_score
child.scores["_mutation"] = float(mutation)
child.scores["_delta"] = delta
child.scores["_radius"] = radius
child.write_scores()
population = new_population
generation += 1