-
Notifications
You must be signed in to change notification settings - Fork 559
/
kmath.c
447 lines (422 loc) · 13.4 KB
/
kmath.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "kmath.h"
/******************************
*** Non-linear programming ***
******************************/
/* Hooke-Jeeves algorithm for nonlinear minimization
Based on the pseudocodes by Bell and Pike (CACM 9(9):684-685), and
the revision by Tomlin and Smith (CACM 12(11):637-638). Both of the
papers are comments on Kaupe's Algorithm 178 "Direct Search" (ACM
6(6):313-314). The original algorithm was designed by Hooke and
Jeeves (ACM 8:212-229). This program is further revised according to
Johnson's implementation at Netlib (opt/hooke.c).
Hooke-Jeeves algorithm is very simple and it works quite well on a
few examples. However, it might fail to converge due to its heuristic
nature. A possible improvement, as is suggested by Johnson, may be to
choose a small r at the beginning to quickly approach to the minimum
and a large r at later step to hit the minimum.
*/
static double __kmin_hj_aux(kmin_f func, int n, double *x1, void *data, double fx1, double *dx, int *n_calls)
{
int k, j = *n_calls;
double ftmp;
for (k = 0; k != n; ++k) {
x1[k] += dx[k];
ftmp = func(n, x1, data); ++j;
if (ftmp < fx1) fx1 = ftmp;
else { /* search the opposite direction */
dx[k] = 0.0 - dx[k];
x1[k] += dx[k] + dx[k];
ftmp = func(n, x1, data); ++j;
if (ftmp < fx1) fx1 = ftmp;
else x1[k] -= dx[k]; /* back to the original x[k] */
}
}
*n_calls = j;
return fx1; /* here: fx1=f(n,x1) */
}
double kmin_hj(kmin_f func, int n, double *x, void *data, double r, double eps, int max_calls)
{
double fx, fx1, *x1, *dx, radius;
int k, n_calls = 0;
x1 = (double*)calloc(n, sizeof(double));
dx = (double*)calloc(n, sizeof(double));
for (k = 0; k != n; ++k) { /* initial directions, based on MGJ */
dx[k] = fabs(x[k]) * r;
if (dx[k] == 0) dx[k] = r;
}
radius = r;
fx1 = fx = func(n, x, data); ++n_calls;
for (;;) {
memcpy(x1, x, n * sizeof(double)); /* x1 = x */
fx1 = __kmin_hj_aux(func, n, x1, data, fx, dx, &n_calls);
while (fx1 < fx) {
for (k = 0; k != n; ++k) {
double t = x[k];
dx[k] = x1[k] > x[k]? fabs(dx[k]) : 0.0 - fabs(dx[k]);
x[k] = x1[k];
x1[k] = x1[k] + x1[k] - t;
}
fx = fx1;
if (n_calls >= max_calls) break;
fx1 = func(n, x1, data); ++n_calls;
fx1 = __kmin_hj_aux(func, n, x1, data, fx1, dx, &n_calls);
if (fx1 >= fx) break;
for (k = 0; k != n; ++k)
if (fabs(x1[k] - x[k]) > .5 * fabs(dx[k])) break;
if (k == n) break;
}
if (radius >= eps) {
if (n_calls >= max_calls) break;
radius *= r;
for (k = 0; k != n; ++k) dx[k] *= r;
} else break; /* converge */
}
free(x1); free(dx);
return fx1;
}
// I copied this function somewhere several years ago with some of my modifications, but I forgot the source.
double kmin_brent(kmin1_f func, double a, double b, void *data, double tol, double *xmin)
{
double bound, u, r, q, fu, tmp, fa, fb, fc, c;
const double gold1 = 1.6180339887;
const double gold2 = 0.3819660113;
const double tiny = 1e-20;
const int max_iter = 100;
double e, d, w, v, mid, tol1, tol2, p, eold, fv, fw;
int iter;
fa = func(a, data); fb = func(b, data);
if (fb > fa) { // swap, such that f(a) > f(b)
tmp = a; a = b; b = tmp;
tmp = fa; fa = fb; fb = tmp;
}
c = b + gold1 * (b - a), fc = func(c, data); // golden section extrapolation
while (fb > fc) {
bound = b + 100.0 * (c - b); // the farthest point where we want to go
r = (b - a) * (fb - fc);
q = (b - c) * (fb - fa);
if (fabs(q - r) < tiny) { // avoid 0 denominator
tmp = q > r? tiny : 0.0 - tiny;
} else tmp = q - r;
u = b - ((b - c) * q - (b - a) * r) / (2.0 * tmp); // u is the parabolic extrapolation point
if ((b > u && u > c) || (b < u && u < c)) { // u lies between b and c
fu = func(u, data);
if (fu < fc) { // (b,u,c) bracket the minimum
a = b; b = u; fa = fb; fb = fu;
break;
} else if (fu > fb) { // (a,b,u) bracket the minimum
c = u; fc = fu;
break;
}
u = c + gold1 * (c - b); fu = func(u, data); // golden section extrapolation
} else if ((c > u && u > bound) || (c < u && u < bound)) { // u lies between c and bound
fu = func(u, data);
if (fu < fc) { // fb > fc > fu
b = c; c = u; u = c + gold1 * (c - b);
fb = fc; fc = fu; fu = func(u, data);
} else { // (b,c,u) bracket the minimum
a = b; b = c; c = u;
fa = fb; fb = fc; fc = fu;
break;
}
} else if ((u > bound && bound > c) || (u < bound && bound < c)) { // u goes beyond the bound
u = bound; fu = func(u, data);
} else { // u goes the other way around, use golden section extrapolation
u = c + gold1 * (c - b); fu = func(u, data);
}
a = b; b = c; c = u;
fa = fb; fb = fc; fc = fu;
}
if (a > c) u = a, a = c, c = u; // swap
// now, a<b<c, fa>fb and fb<fc, move on to Brent's algorithm
e = d = 0.0;
w = v = b; fv = fw = fb;
for (iter = 0; iter != max_iter; ++iter) {
mid = 0.5 * (a + c);
tol2 = 2.0 * (tol1 = tol * fabs(b) + tiny);
if (fabs(b - mid) <= (tol2 - 0.5 * (c - a))) {
*xmin = b; return fb; // found
}
if (fabs(e) > tol1) {
// related to parabolic interpolation
r = (b - w) * (fb - fv);
q = (b - v) * (fb - fw);
p = (b - v) * q - (b - w) * r;
q = 2.0 * (q - r);
if (q > 0.0) p = 0.0 - p;
else q = 0.0 - q;
eold = e; e = d;
if (fabs(p) >= fabs(0.5 * q * eold) || p <= q * (a - b) || p >= q * (c - b)) {
d = gold2 * (e = (b >= mid ? a - b : c - b));
} else {
d = p / q; u = b + d; // actual parabolic interpolation happens here
if (u - a < tol2 || c - u < tol2)
d = (mid > b)? tol1 : 0.0 - tol1;
}
} else d = gold2 * (e = (b >= mid ? a - b : c - b)); // golden section interpolation
u = fabs(d) >= tol1 ? b + d : b + (d > 0.0? tol1 : -tol1);
fu = func(u, data);
if (fu <= fb) { // u is the minimum point so far
if (u >= b) a = b;
else c = b;
v = w; w = b; b = u; fv = fw; fw = fb; fb = fu;
} else { // adjust (a,c) and (u,v,w)
if (u < b) a = u;
else c = u;
if (fu <= fw || w == b) {
v = w; w = u;
fv = fw; fw = fu;
} else if (fu <= fv || v == b || v == w) {
v = u; fv = fu;
}
}
}
*xmin = b;
return fb;
}
static inline float SIGN(float a, float b)
{
return b >= 0 ? (a >= 0 ? a : -a) : (a >= 0 ? -a : a);
}
double krf_brent(double x1, double x2, double tol, double (*func)(double, void*), void *data, int *err)
{
const int max_iter = 100;
const double eps = 3e-8f;
int i;
double a = x1, b = x2, c = x2, d, e, min1, min2;
double fa, fb, fc, p, q, r, s, tol1, xm;
*err = 0;
fa = func(a, data), fb = func(b, data);
if ((fa > 0.0f && fb > 0.0f) || (fa < 0.0f && fb < 0.0f)) {
*err = -1;
return 0.0f;
}
fc = fb;
for (i = 0; i < max_iter; ++i) {
if ((fb > 0.0f && fc > 0.0f) || (fb < 0.0f && fc < 0.0f)) {
c = a;
fc = fa;
e = d = b - a;
}
if (fabs(fc) < fabs(fb)) {
a = b, b = c, c = a;
fa = fb, fb = fc, fc = fa;
}
tol1 = 2.0f * eps * fabs(b) + 0.5f * tol;
xm = 0.5f * (c - b);
if (fabs(xm) <= tol1 || fb == 0.0f)
return b;
if (fabs(e) >= tol1 && fabs(fa) > fabs(fb)) {
s = fb / fa;
if (a == c) {
p = 2.0f * xm * s;
q = 1.0f - s;
} else {
q = fa / fc;
r = fb / fc;
p = s * (2.0f * xm * q * (q - r) - (b - a) * (r - 1.0f));
q = (q - 1.0f) * (r - 1.0f) * (s - 1.0f);
}
if (p > 0.0f) q = -q;
p = fabs(p);
min1 = 3.0f * xm * q - fabs(tol1 * q);
min2 = fabs(e * q);
if (2.0f * p < (min1 < min2 ? min1 : min2)) {
e = d;
d = p / q;
} else {
d = xm;
e = d;
}
} else {
d = xm;
e = d;
}
a = b;
fa = fb;
if (fabs(d) > tol1) b += d;
else b += SIGN(tol1, xm);
fb = func(b, data);
}
*err = -2;
return 0.0;
}
/*************************
*** Special functions ***
*************************/
/* Log gamma function
* \log{\Gamma(z)}
* AS245, 2nd algorithm, http://lib.stat.cmu.edu/apstat/245
*/
double kf_lgamma(double z)
{
double x = 0;
x += 0.1659470187408462e-06 / (z+7);
x += 0.9934937113930748e-05 / (z+6);
x -= 0.1385710331296526 / (z+5);
x += 12.50734324009056 / (z+4);
x -= 176.6150291498386 / (z+3);
x += 771.3234287757674 / (z+2);
x -= 1259.139216722289 / (z+1);
x += 676.5203681218835 / z;
x += 0.9999999999995183;
return log(x) - 5.58106146679532777 - z + (z-0.5) * log(z+6.5);
}
/* complementary error function
* \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2} dt
* AS66, 2nd algorithm, http://lib.stat.cmu.edu/apstat/66
*/
double kf_erfc(double x)
{
const double p0 = 220.2068679123761;
const double p1 = 221.2135961699311;
const double p2 = 112.0792914978709;
const double p3 = 33.912866078383;
const double p4 = 6.37396220353165;
const double p5 = .7003830644436881;
const double p6 = .03526249659989109;
const double q0 = 440.4137358247522;
const double q1 = 793.8265125199484;
const double q2 = 637.3336333788311;
const double q3 = 296.5642487796737;
const double q4 = 86.78073220294608;
const double q5 = 16.06417757920695;
const double q6 = 1.755667163182642;
const double q7 = .08838834764831844;
double expntl, z, p;
z = fabs(x) * M_SQRT2;
if (z > 37.) return x > 0.? 0. : 2.;
expntl = exp(z * z * - .5);
if (z < 10. / M_SQRT2) // for small z
p = expntl * ((((((p6 * z + p5) * z + p4) * z + p3) * z + p2) * z + p1) * z + p0)
/ (((((((q7 * z + q6) * z + q5) * z + q4) * z + q3) * z + q2) * z + q1) * z + q0);
else p = expntl / 2.506628274631001 / (z + 1. / (z + 2. / (z + 3. / (z + 4. / (z + .65)))));
return x > 0.? 2. * p : 2. * (1. - p);
}
/* The following computes regularized incomplete gamma functions.
* Formulas are taken from Wiki, with additional input from Numerical
* Recipes in C (for modified Lentz's algorithm) and AS245
* (http://lib.stat.cmu.edu/apstat/245).
*
* A good online calculator is available at:
*
* http://www.danielsoper.com/statcalc/calc23.aspx
*
* It calculates upper incomplete gamma function, which equals
* kf_gammaq(s,z)*tgamma(s).
*/
#define KF_GAMMA_EPS 1e-14
#define KF_TINY 1e-290
// regularized lower incomplete gamma function, by series expansion
static double _kf_gammap(double s, double z)
{
double sum, x;
int k;
for (k = 1, sum = x = 1.; k < 100; ++k) {
sum += (x *= z / (s + k));
if (x / sum < KF_GAMMA_EPS) break;
}
return exp(s * log(z) - z - kf_lgamma(s + 1.) + log(sum));
}
// regularized upper incomplete gamma function, by continued fraction
static double _kf_gammaq(double s, double z)
{
int j;
double C, D, f;
f = 1. + z - s; C = f; D = 0.;
// Modified Lentz's algorithm for computing continued fraction
// See Numerical Recipes in C, 2nd edition, section 5.2
for (j = 1; j < 100; ++j) {
double a = j * (s - j), b = (j<<1) + 1 + z - s, d;
D = b + a * D;
if (D < KF_TINY) D = KF_TINY;
C = b + a / C;
if (C < KF_TINY) C = KF_TINY;
D = 1. / D;
d = C * D;
f *= d;
if (fabs(d - 1.) < KF_GAMMA_EPS) break;
}
return exp(s * log(z) - z - kf_lgamma(s) - log(f));
}
double kf_gammap(double s, double z)
{
return z <= 1. || z < s? _kf_gammap(s, z) : 1. - _kf_gammaq(s, z);
}
double kf_gammaq(double s, double z)
{
return z <= 1. || z < s? 1. - _kf_gammap(s, z) : _kf_gammaq(s, z);
}
/* Regularized incomplete beta function. The method is taken from
* Numerical Recipe in C, 2nd edition, section 6.4. The following web
* page calculates the incomplete beta function, which equals
* kf_betai(a,b,x) * gamma(a) * gamma(b) / gamma(a+b):
*
* http://www.danielsoper.com/statcalc/calc36.aspx
*/
static double kf_betai_aux(double a, double b, double x)
{
double C, D, f;
int j;
if (x == 0.) return 0.;
if (x == 1.) return 1.;
f = 1.; C = f; D = 0.;
// Modified Lentz's algorithm for computing continued fraction
for (j = 1; j < 200; ++j) {
double aa, d;
int m = j>>1;
aa = (j&1)? -(a + m) * (a + b + m) * x / ((a + 2*m) * (a + 2*m + 1))
: m * (b - m) * x / ((a + 2*m - 1) * (a + 2*m));
D = 1. + aa * D;
if (D < KF_TINY) D = KF_TINY;
C = 1. + aa / C;
if (C < KF_TINY) C = KF_TINY;
D = 1. / D;
d = C * D;
f *= d;
if (fabs(d - 1.) < KF_GAMMA_EPS) break;
}
return exp(kf_lgamma(a+b) - kf_lgamma(a) - kf_lgamma(b) + a * log(x) + b * log(1.-x)) / a / f;
}
double kf_betai(double a, double b, double x)
{
return x < (a + 1.) / (a + b + 2.)? kf_betai_aux(a, b, x) : 1. - kf_betai_aux(b, a, 1. - x);
}
/******************
*** Statistics ***
******************/
double km_ks_dist(int na, const double a[], int nb, const double b[]) // a[] and b[] MUST BE sorted
{
int ia = 0, ib = 0;
double fa = 0, fb = 0, sup = 0, na1 = 1. / na, nb1 = 1. / nb;
while (ia < na || ib < nb) {
if (ia == na) fb += nb1, ++ib;
else if (ib == nb) fa += na1, ++ia;
else if (a[ia] < b[ib]) fa += na1, ++ia;
else if (a[ia] > b[ib]) fb += nb1, ++ib;
else fa += na1, fb += nb1, ++ia, ++ib;
if (sup < fabs(fa - fb)) sup = fabs(fa - fb);
}
return sup;
}
#ifdef KF_MAIN
#include <stdio.h>
#include "ksort.h"
KSORT_INIT_GENERIC(double)
int main(int argc, char *argv[])
{
double x = 5.5, y = 3;
double a, b;
double xx[] = {0.22, -0.87, -2.39, -1.79, 0.37, -1.54, 1.28, -0.31, -0.74, 1.72, 0.38, -0.17, -0.62, -1.10, 0.30, 0.15, 2.30, 0.19, -0.50, -0.09};
double yy[] = {-5.13, -2.19, -2.43, -3.83, 0.50, -3.25, 4.32, 1.63, 5.18, -0.43, 7.11, 4.87, -3.10, -5.81, 3.76, 6.31, 2.58, 0.07, 5.76, 3.50};
ks_introsort(double, 20, xx); ks_introsort(double, 20, yy);
printf("K-S distance: %f\n", km_ks_dist(20, xx, 20, yy));
printf("erfc(%lg): %lg, %lg\n", x, erfc(x), kf_erfc(x));
printf("upper-gamma(%lg,%lg): %lg\n", x, y, kf_gammaq(y, x)*tgamma(y));
a = 2; b = 2; x = 0.5;
printf("incomplete-beta(%lg,%lg,%lg): %lg\n", a, b, x, kf_betai(a, b, x) / exp(kf_lgamma(a+b) - kf_lgamma(a) - kf_lgamma(b)));
return 0;
}
#endif