-
Notifications
You must be signed in to change notification settings - Fork 323
/
plot_metrics.py
260 lines (229 loc) · 10.4 KB
/
plot_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You may not
# use this file except in compliance with the License. A copy of the License
# is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is distributed on
# an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
from argparse import ArgumentParser
from bisect import insort
from collections import defaultdict
from os import path
import matplotlib.pyplot as plt
import numpy as np
PARSE_ENTRY = defaultdict(lambda: str)
PARSE_ENTRY.update({
'bleu-val': float,
'bleu-test': float,
'chrf-val': float,
'epoch': int,
'learning-rate': float,
'perplexity-train': float,
'perplexity-val': float,
'time-elapsed': lambda s: float(s) / (60 * 60),
})
FIND_BEST = defaultdict(lambda: max)
FIND_BEST.update({
'bleu-val': max,
'bleu-test': max,
'chrf-val': max,
'learning-rate': min,
'perplexity-train': min,
'perplexity-val': min,
})
AX_LABEL = {
'bleu-val': 'Validation BLEU',
'bleu-test': 'Test BLEU',
'chrf-val': 'Validation chrF',
'checkpoint': 'Checkpoint',
'epoch': 'Epoch',
'learning-rate': 'Learning Rate',
'perplexity-train': 'Training Perplexity',
'perplexity-val': 'Validation Perplexity',
'time-elapsed': 'Time (Hours)',
}
def ax_label(s):
if s in AX_LABEL:
return AX_LABEL[s]
return s
def read_metrics_file(fname):
metrics = defaultdict(list)
for line in open(fname, encoding='utf-8'):
entries = line.split()
metrics['checkpoint'].append(int(entries[0]))
for entry in entries[1:]:
k, v = entry.split('=')
v = PARSE_ENTRY[k](v)
metrics[k].append(v)
return metrics
def average_points(points, num_points, cmp):
averaged = []
best = []
for point in points:
insort(best, point)
best = best[:num_points] if cmp is min else best[-num_points:]
averaged.append(sum(best) / len(best))
return averaged
def points_since_improvement(points, cmp):
num_not_improved = []
best = None
since_improvement = 0
for point in points:
if best is None or (cmp is min and point < best) or (cmp is max and point > best):
best = point
since_improvement = 0
num_not_improved.append(since_improvement)
since_improvement += 1
return num_not_improved
def window_improvement(points, num_points, cmp):
window_improvement_at_point = []
best_at_point = []
for point in points:
if not best_at_point:
best_at_point.append(point)
elif (cmp is min and point < best_at_point[-1]) or (cmp is max and point > best_at_point[-1]):
best_at_point.append(point)
else:
best_at_point.append(best_at_point[-1])
if len(best_at_point) > num_points:
best_at_point = best_at_point[-num_points:]
window_improvement_at_point.append(abs(best_at_point[-1] - best_at_point[0]))
return window_improvement_at_point
def slope(points, num_points):
# First point has no slope
slope_at_point = [0]
# Start computing slope with second point
for i in range(1, len(points)):
x, y = list(zip(*enumerate(points[max(i - num_points, 0):i + 1])))
slope_at_point.append(np.polyfit(x, y, 1)[0])
return slope_at_point
def plot_metrics(args):
fig, ax = plt.subplots()
if args.y2:
# Create axis for second Y metric
ax2 = ax.twinx()
overall_best_y = None
if len(args.skip) == 1:
args.skip *= len(args.input)
if len(args.every) == 1:
args.every *= len(args.input)
# Paper scaling
linewidth = 1.25 if args.paper else 1.0
label_size = 12 if args.paper else None
title_size = 16 if args.paper else None
legend_size = 12 if args.paper else None
tick_size = 12 if args.paper else None
for fname, label, skip, every in zip(args.input,
args.legend if args.legend is not None
else (path.basename(fname) for fname in args.input),
args.skip,
args.every):
# Read metrics file to dict
metrics = read_metrics_file(fname)
x_vals = metrics[args.x][skip:]
y_vals = metrics[args.y][skip:]
y2_vals = metrics[args.y2][skip:] if args.y2 else None
x_label=ax_label(args.x)
y_label=ax_label(args.y)
y2_label=ax_label(args.y2)
# Spread points that collapse into one significant digit (ex: epochs)
for i_label, i_vals in zip([args.x, args.y], [x_vals, y_vals]):
if i_label in ['epoch']:
i_vals[:] = np.linspace(i_vals[0], i_vals[-1], len(i_vals))
# Optionally invert Y values
if args.y_invert:
y_vals = [val * -1 for val in y_vals]
if args.y2_invert:
y2_vals = [val * -1 for val in y2_vals]
# Optionally average best points so far for each Y point
if args.y_average is not None:
y_vals = average_points(y_vals, args.y_average, cmp=FIND_BEST[args.y])
y_label = '{} (Average of {} Points)'.format(y_label, args.y_average)
# Optionally count points since last improvement for each Y point
if args.y_since_best:
y_vals = points_since_improvement(y_vals, cmp=FIND_BEST[args.y])
y_label = '{} (Checkpoints Since Improvement)'.format(y_label)
# Optionally compute the window improvement for each Y point
if args.y_window_improvement is not None:
y_vals = window_improvement(y_vals, args.y_window_improvement, cmp=FIND_BEST[args.y])
# Don't plot points for which window improvement is unreliable
# (fewer than number points used for window)
x_vals = x_vals[args.y_window_improvement - 1:]
y_vals = y_vals[args.y_window_improvement - 1:]
y_label = '{} (Window Improvement over {} Points)'.format(y_label, args.y_window_improvement)
# Optionally compute current slope for each Y point
if args.y_slope is not None:
y_vals = slope(y_vals, args.y_slope)
# Don't plot points for which slope is unreliable (fewer than number
# points used to compute slope)
x_vals = x_vals[args.y_slope - 1:]
y_vals = y_vals[args.y_slope - 1:]
if y2_vals:
y2_vals = y2_vals[args.y_slope - 1:]
y_label = '{} (Slope of {} Points)'.format(y_label, args.y_slope)
# Only plot every N values
x_vals = x_vals[::every]
y_vals = y_vals[::every]
if y2_vals:
y2_vals = y2_vals[::every]
# Plot values for this metrics file
ax.plot(x_vals, y_vals, linewidth=linewidth, alpha=0.75, label=label)
ax.set_xlabel(x_label, fontsize=label_size)
ax.set_ylabel(y_label, fontsize=label_size)
plt.title(args.title, fontsize=title_size)
plt.xticks(fontsize=tick_size)
plt.yticks(fontsize=tick_size)
# If present, plot and label second Y axis metric
if args.y2:
ax2.plot(x_vals, y2_vals, linewidth=linewidth / 2, alpha=0.75, label=label)
ax2.set_ylabel(y2_label, fontsize=label_size)
# Optionally track best point so far
if args.best:
best_y = FIND_BEST[args.y](y_vals)
if overall_best_y is None:
overall_best_y = best_y
else:
overall_best_y = FIND_BEST[args.y](best_y, overall_best_y)
# Optionally mark best Y point across metrics files
if args.best:
ax.axhline(y=overall_best_y, color='gray', linewidth=linewidth, linestyle='--', zorder=999)
# Optionally draw user specified Y line
if args.y_line is not None:
ax.axhline(y=args.y_line, color='gray', linewidth=linewidth, linestyle='--', zorder=999)
ax.grid()
ax.legend(fontsize=legend_size)
fig.tight_layout()
fig.savefig(args.output)
def main():
params = ArgumentParser(description='Plot data from \'metrics\' files written during training.')
params.add_argument('-i', '--input', required=True, nargs='+', help='One or more \'metrics\' files to plot.')
params.add_argument('-o', '--output', required=True, help='Output file to write (ex: plot.pdf).')
params.add_argument('-x', default='time-elapsed', help='X axis metric.')
params.add_argument('-y', default='perplexity-train', help='Y axis metric.')
params.add_argument('-y2', help='Second Y axis metric.')
params.add_argument('-yi', '--y-invert', action='store_true', help='Invert Y metric (multiply values by -1).')
params.add_argument('-y2i', '--y2-invert', action='store_true',
help='Invert second Y metric (multiply values by -1).')
params.add_argument('-ya', '--y-average', type=int, help='Average the N best points so far for each Y value.')
params.add_argument('-ysb', '--y-since-best', action='store_true',
help='Use number of points since improvement for each Y value.')
params.add_argument('-ywi', '--y-window-improvement', type=int,
help='Improvement in best over the last N points for each Y value.')
params.add_argument('-ysl', '--y-slope', type=int, help='Compute current slope for each Y value.')
params.add_argument('-yli', '--y-line', type=float, help='Draw a horizontal line at specified Y value.')
params.add_argument('-l', '--legend', nargs='+', help='Labels in legend (one per input file).')
params.add_argument('-t', '--title', help='Plot title.')
params.add_argument('-b', '--best', action='store_true', help='Draw horizontal line at best Y value.')
params.add_argument('-s', '--skip', type=int, nargs='+', default=(0,),
help='Skip the first N points for better readability. Single value or value per input.')
params.add_argument('-ev', '--every', type=int, nargs='+', default=(1,), help='Only plot one point every N points.')
params.add_argument('-p', '--paper', action='store_true', help='Scale plot elements for inclusion in papers.')
args = params.parse_args()
plot_metrics(args)
if __name__ == '__main__':
main()