-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluateFitnessClusteringHierarchical.m
56 lines (56 loc) · 3.04 KB
/
evaluateFitnessClusteringHierarchical.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
% COPYRIGHT
% This file is part of TSSA: https://github.com/ayrna/tssa
% Original authors: Antonio M. Duran Rosal, Pedro A. Gutierrez
% Copyright:
% This software is released under the The GNU General Public License v3.0 licence
% available at http://www.gnu.org/licenses/gpl-3.0.html
% Citation: If you use this code, please cite any of the following papers:
% [1] M. Pérez-Ortiz, A.M. Durán-Rosal, P.A. Gutiérrez, et al.
% "On the use of evolutionary time series analysis for segmenting paleoclimate data"
% Neurocomputing, Vol. 326-327, January, 2019, pp. 3-14
% https://doi.org/10.1016/j.neucom.2016.11.101
% [2] A.M. Durán-Rosal, P.A. Gutiérrez, F.J. Martínez-Estudillo and C. Hervás-Martínez.
% "Simultaneous optimisation of clustering quality and approximation error
% for time series segmentation", Information Sciences, Vol. 442-443, May, 2018, pp. 186-201.
% https://doi.org/10.1016/j.ins.2018.02.041
% [3] A.M. Durán-Rosal, J.C. Fernández, P.A. Gutiérrez and C. Hervás-Martínez.
% "Detection and prediction of segments containing extreme significant wave heights"
% Ocean Engineering, Vol. 142, September, 2017, pp. 268-279.
% https://doi.org/10.1016/j.oceaneng.2017.07.009
% [4] A.M. Durán-Rosal, M. de la Paz Marín, P.A. Gutiérrez and C. Hervás-Martínez.
% "Identifying market behaviours using European Stock Index time series by
% a hybrid segmentation algorithm", Neural Processing Letters,
% Vol. 46, December, 2017, pp. 767–790.
% https://doi.org/10.1007/s11063-017-9592-8
%
%% evaluateFitnessClusteringHierarchical
% Function: Evaluation method for clustering Kmeans
%
% Input:
% typeError: type of error (RMSE, RMSEp, MAXe) (see function computeErrors)
% typeClustMeasure: type of clustering fitness measure (see function fitnessF)
% population: set of chromosomes
% oldFitness: fitness of population
% k: number of clusters
% iterClust: maximum number of iteration for k-means (see function clustering)
% serie: time series
% characActivation: flag array to decide which characteristics are used
% degree: degree of approximation
%
% Output:
% fitness: fitness of current population
function [fitness] = evaluateFitnessClusteringHierarchical(typeError,typeClustMeasure,population,oldFitness,k,serie,characActivation,degree)
fitness = zeros(1,size(population,1));
%fitness = oldFitness;
for i=1:size(population,1),
if isnan(oldFitness(i)),
[charac] = computeMetrics(population(i,:),serie,characActivation,degree,typeError);
[normCharac] = normalizeFunction(charac);
%Clustering
[assignation,centroids] = clusteringHierarchical(normCharac,k);
fitness(i) = fitnessF(typeClustMeasure,normCharac,assignation,centroids,k);
elseif oldFitness(i) == -1,
fitness(i) = -1;
end
end
end