-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.m
119 lines (117 loc) · 4.9 KB
/
metrics.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
% COPYRIGHT
% This file is part of TSSA: https://github.com/ayrna/tssa
% Original authors: Antonio M. Duran Rosal, Pedro A. Gutierrez
% Copyright:
% This software is released under the The GNU General Public License v3.0 licence
% available at http://www.gnu.org/licenses/gpl-3.0.html
% Citation: If you use this code, please cite any of the following papers:
% [1] M. Pérez-Ortiz, A.M. Durán-Rosal, P.A. Gutiérrez, et al.
% "On the use of evolutionary time series analysis for segmenting paleoclimate data"
% Neurocomputing, Vol. 326-327, January, 2019, pp. 3-14
% https://doi.org/10.1016/j.neucom.2016.11.101
% [2] A.M. Durán-Rosal, P.A. Gutiérrez, F.J. Martínez-Estudillo and C. Hervás-Martínez.
% "Simultaneous optimisation of clustering quality and approximation error
% for time series segmentation", Information Sciences, Vol. 442-443, May, 2018, pp. 186-201.
% https://doi.org/10.1016/j.ins.2018.02.041
% [3] A.M. Durán-Rosal, J.C. Fernández, P.A. Gutiérrez and C. Hervás-Martínez.
% "Detection and prediction of segments containing extreme significant wave heights"
% Ocean Engineering, Vol. 142, September, 2017, pp. 268-279.
% https://doi.org/10.1016/j.oceaneng.2017.07.009
% [4] A.M. Durán-Rosal, M. de la Paz Marín, P.A. Gutiérrez and C. Hervás-Martínez.
% "Identifying market behaviours using European Stock Index time series by
% a hybrid segmentation algorithm", Neural Processing Letters,
% Vol. 46, December, 2017, pp. 767–790.
% https://doi.org/10.1007/s11063-017-9592-8
%
%% metrics
% Function: Values of the metrics for a given segment
%
% Input:
% segment: time series values of the segment
% characActivation: flag array to decide which characteristics are used
% degree: degree of approximation
% typeError: type of error (RMSE, RMSEp, MAXe) (see function computeErrors)
%
% Output:
% values: array of characteristics of the segment
function [values] = metrics(segment,characActivation,degree,typeError)
% To extract statistic metrics
values = zeros(1,(sum(characActivation(1:end-2))+degree*characActivation(end-1)+characActivation(end)));
X = 1:numel(segment);
X = transpose(X);
c = (1/numel(segment));
m = sum(segment)*c;
a = (segment-m);
varsegment = c * sum(a.^2);
s = sqrt(varsegment);
if s==0,
counterValues = 1;
if characActivation(1)==1,
values(counterValues) = 0; %Variance
counterValues = counterValues + 1;
end
if characActivation(2)==1,
values(counterValues) = 0; %Skewness
counterValues = counterValues + 1;
end
if characActivation(3)==1,
values(counterValues) = -3; %Kurtosis
counterValues = counterValues + 1;
end
if characActivation(4)==1,
values(counterValues) = 0; %Autocorrelation
counterValues = counterValues + 1;
end
if characActivation(5)==1,
for i=1:degree,
values(counterValues) = 0;
counterValues = counterValues + 1;
end
end
if characActivation(6)==1,
values(counterValues) = 0; %Error
end
else
counterValues = 1;
if characActivation(1)==1,
values(counterValues) = varsegment; %Variance
counterValues = counterValues + 1;
end
if characActivation(2)==1,
values(counterValues) = c*(sum(a.^3)/(s.^3)); %Skewness
counterValues = counterValues + 1;
end
if characActivation(3)==1,
values(counterValues) = c*(sum(a.^4)/varsegment.^2) - 3; %Kurtosis
counterValues = counterValues + 1;
end
if characActivation(4)==1,
values(counterValues) = sum((segment(1:end-1) - m) .* (segment(2:end) - m))/varsegment; %Autocorrelation
counterValues = counterValues + 1;
end
p = polyfit(X,segment,degree);
if characActivation(5)==1,
for i=1:degree,
values(counterValues) = p(i);
counterValues = counterValues + 1;
end
end
if characActivation(6)==1,
values(counterValues) = 0; %Error
% Error
% estimated(:,1)= p(1)*X(:,1).*X(:,1) + p(2)*X(:,1) + p(3);
estimated(:,1) = polyval(p,X(:,1));
error = estimated(:,1) - segment(:,1);
error = error.*error;
if typeError == 1,
N=numel(error);
error=sum(error);
values(counterValues)=error/N; %MSE
elseif typeError == 2,
values(counterValues)=sum(error); %SSE
else
values(counterValues)=max(error); %MAXe
end
end
end
end