-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathupdateArrays.m
40 lines (39 loc) · 1.95 KB
/
updateArrays.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
% COPYRIGHT
% This file is part of TSSA: https://github.com/ayrna/tssa
% Original authors: Antonio M. Duran Rosal, Pedro A. Gutierrez
% Copyright:
% This software is released under the The GNU General Public License v3.0 licence
% available at http://www.gnu.org/licenses/gpl-3.0.html
% Citation: If you use this code, please cite the following paper:
% [1] A.M. Durán-Rosal, P.A. Gutiérrez, Á. Carmona-Poyato and C. Hervás-Martínez.
% "A hybrid dynamic exploitation barebones particle swarm optimisation
% algorithm for time series segmentation", Neurocomputing,
% Vol. 353, August, 2019, pp. 45-55.
% https://doi.org/10.1016/j.neucom.2018.05.129
%
%% updateArrays
% Function: Update the best global position and the best personal positions of each particle
%
% Input:
% currentPopulationInt: population
% currentFitness: fitness of the population
% bestLocalPopulationInt: best local positions
% bestLocalFitness: best local fitness
% bestIndividual: best global position
% bestIndividualFitness: best global fitness
%
% Output:
% bestLocalPopulationInt: updated best local positions
% bestLocalFitness: updated best local fitness
% bestIndividual: updated best global position
% bestIndividualFitness: updated best global fitness
function [bestLocalPopulationInt, bestLocalFitness, bestIndividual, bestIndividualFitness] = updateArrays(currentPopulationInt, currentFitness, bestLocalPopulationInt, bestLocalFitness, bestIndividual, bestIndividualFitness)
ind = find(currentFitness > bestLocalFitness);
bestLocalPopulationInt(ind,:)=currentPopulationInt(ind,:);
bestLocalFitness(ind)=currentFitness(ind);
[fbest, indMax] = max(bestLocalFitness);
if fbest > bestIndividualFitness,
bestIndividual = bestLocalPopulationInt(indMax,:);
bestIndividualFitness = fbest;
end
end