This repository has been archived by the owner on Nov 18, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
c_wrapper.py
102 lines (84 loc) · 3.37 KB
/
c_wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Copyright (C) 2016, 2017 University of Vienna
# All rights reserved.
# BSD license.
# Author: Ali Baharev <[email protected]>
from __future__ import print_function, division
from cffi import FFI
from numpy import float64, intc
__all__ = ['open_so', 'evaluate', 'jacobian_evaluation', 'solve', 'solve_fixed']
ffi = FFI()
ffi.cdef('''
void evaluate(int index, const double* py_point, double* py_residual);
void jacobian_evaluation(int index,
const double* py_point,
double* py_residual,
double* py_2d_array);
void solve(int index,
double* x_2d_array,
double* res_2d_array,
const int n_points,
const int* idx_fixed_2d,
const double* val_fixed_2d,
const int n_cols_fixed_2d,
const double tolerance, // 1.0e-8, >= EPS[i]^2
const int n_trials,
unsigned int seed,
const int iprint);
''')
NULL = ffi.NULL
so = None
def double_ptr(arr):
assert arr.dtype == float64, arr.dtype
return ffi.cast('double*', arr.ctypes.data)
def const_int_ptr(arr):
assert arr.dtype == intc, arr.dtype
return ffi.cast('const int*', arr.ctypes.data)
def const_double_ptr(arr):
assert arr.dtype == float64, arr.dtype
return ffi.cast('const double*', arr.ctypes.data)
def open_so(name):
global so
so = ffi.dlopen(name)
def evaluate(index, x, r):
assert so, 'First open the .so by calling open_so(name)!'
assert len(x.shape) == 1 and len(r.shape) == 1, '1D arrays expected'
x = const_double_ptr(x)
r = double_ptr(r)
so.evaluate(index, x, r)
def jacobian_evaluation(index, x, r, jac_2d_arr):
# jac_2d_array is a NumPy array storing the Jacobian as a DENSE matrix
m, n = jac_2d_arr.shape
assert m <= len(r) and n <= len(x)
x = const_double_ptr(x)
r = double_ptr(r)
jac_2d_arr = double_ptr(jac_2d_arr)
so.jacobian_evaluation(index, x, r, jac_2d_arr)
def solve(index, x, r, tol=1.0e-8, n_trials=10, seed=0, iprint=0):
# The x and r are NOT touched if the solver fails, otherwise their
# corresponding entries will be set to the solution.
# The x and r are 2D arrays: set of points and the corresponding residuals.
# The seed is not set (changed) if seed is equal to 0.
# The tolerance should be at least EPS[i]^2 (=1.0e-8), see the FORTRAN code.
assert_2d_arrays_of_equal_length(x, r)
n_points = x.shape[0]
x = double_ptr(x)
r = double_ptr(r)
so.solve(index, x, r, n_points, NULL, NULL, 0, tol, n_trials, seed, iprint)
def solve_fixed(index, x, r, idx, val, tol=1.0e-8, n_trials=40, seed=0, iprint=0):
# See the comments just above at solve()!
# Fixed variables: for point i, idx[i] gives their index array (index in the
# va27_point), val[i] their value array.
assert_2d_arrays_of_equal_length(x, r)
assert_2d_arrays_of_equal_length(idx, val)
assert x.shape[0] == idx.shape[0], (x.shape, idx.shape)
n_points = x.shape[0]
n_fixed = val.shape[1]
x = double_ptr(x)
r = double_ptr(r)
idx = const_int_ptr(idx)
val = const_double_ptr(val)
so.solve(index, x, r, n_points, idx, val, n_fixed, tol, n_trials, seed, iprint)
def assert_2d_arrays_of_equal_length(a, b):
ma, na = a.shape # a must be a 2D array
mb, nb = b.shape # b must be a 2D array
assert ma == mb and na and nb, (a.shape, b.shape)