This repository has been archived by the owner on Nov 18, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
865 lines (767 loc) · 36.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
# Copyright (C) 2017, 2018 University of Vienna
# All rights reserved.
# BSD license.
# Author: Ali Baharev <[email protected]>
from __future__ import print_function, division
from collections import namedtuple
from functools import partial
from glob import glob
from os import mkdir, remove, makedirs
from os.path import isdir, isfile
import numpy as np
from cffi_solve import CProblem
from c_sub_check import create_dag, generate_c_code, compile_c_code, \
TMP_DIR, clean_up_intermediate_files, get_so_name, \
gen_x_r_slices
from c_subprobs import var_idx_order, con_idx_order, get_var_bnds
from perturb import perturb_C
from subsampling2 import subsample2
from utils import print_timing, warning
TestCase = namedtuple('TestCase', 'interesting h_max so_suffix')
PROBLEMS = {
'blockEx': TestCase(interesting=['x[%d]' % i for i in range(1, 21)],
h_max=5, so_suffix='_plot'),
'spider2D': TestCase(interesting=['x[%d]' % i for i in range(1, 41)],
h_max=5, so_suffix='_plot'),
'mss10_4':
TestCase(interesting=['x[3,%d]' % i for i in range(10, 0, -1)],
#interesting=['T[%d]' % i for i in range(10, 0, -1) ],
h_max=4, so_suffix='_plot'),
'mss20_4':
TestCase(interesting=['x[3,%d]' % i for i in range(20, 0, -1)],
#interesting=['x[3,%d]' % i for i in range(20, 0, -1)],
#interesting=['T[%d]' % i for i in range(20, 0, -1) ],
h_max=4, so_suffix='_plot'),
'mss40_4':
TestCase(interesting=['x[3,%d]' % i for i in range(40, 0, -1)],
#interesting=['T[%d]' % i for i in range(40, 0, -1) ],
h_max=4, so_suffix='_plot'),
'mss60_4':
TestCase(interesting=['x[3,%d]' % i for i in range(60, 0, -1)],
#interesting=['T[%d]' % i for i in range(60, 0, -1) ],
h_max=8, so_suffix='_plot'),
'mss60_A':
TestCase(interesting=['x[3,%d]' % i for i in range(60, 0, -1)],
#interesting=['T[%d]' % i for i in range(60, 0, -1) ],
h_max=8, so_suffix='_plot'),
'mss60_B':
TestCase(interesting=['x[3,%d]' % i for i in range(60, 0, -1)],
#interesting=['T[%d]' % i for i in range(60, 0, -1) ],
h_max=6, so_suffix='_plot'),
'mss75_B':
TestCase(interesting=['x[3,%d]' % i for i in range(75, 0, -1)],
#interesting=['T[%d]' % i for i in range(75, 0, -1) ],
h_max=8, so_suffix='_plot'),
'extrSeq':
TestCase(interesting=['x[3,%d]' % i for i in range(30, 0, -1)],
#interesting=['T[%d]' % i for i in range(60, 0, -1) ],
h_max=8, so_suffix='_plot'),
}
#-------------------------------------------------------------------------------
# WARNING: We assume an upper envelope with square blocks except the first and
# the last block which are rectangular (under- and over-determined, resp.)
#-------------------------------------------------------------------------------
_N_PTS = 100
N_INITIAL_POINTS = 400
N_POINTS_BACKSLV = int(10*_N_PTS)
N_POINTS_PERTURB = int(10*_N_PTS)
NEW_PTS_PER_SUBP = 200
K_OVERSAMPLE = 5
K_MATCHES = 20
# Note: Fixing x_new and a *strict* tol -> poor performance ~ rejection sampling
TOL_BACK = 1.0E-6 # When we are inserting new points out of the blue
TOL_PERT = 1.0E-6 # When we apply some artifical constraint violations too
TOL_LAST = 1.0E-6 # At the last h_max subproblems
TOL_TRY = 1.0e-3 # Try to fix bound violations less then this threshold
TOL_ACCEPT = 1.0e-6 # Acceptable constraint violation after fixing bound violations
# And we are subsampling the point clump!
#-------------------------------------------------------------------------------
_fwd = None
_bwd = None
def main():
#name = 'spider2D'
#name = 'blockEx'
name = 'mss60_B'
#name = 'extrSeq'
interesting, h_max, so_suffix = PROBLEMS[name]
#---
if not isdir(TMP_DIR):
print('Creating folder "{}"'.format(TMP_DIR))
makedirs(TMP_DIR)
#---
g, problem = create_dag(name)
manifold_dim = get_manifold_dim(problem)
print('Manifold dimension:', manifold_dim)
global bwd_n_fixed_vars
bwd_n_fixed_vars = partial(__bwd_n_fixed_vars, manifold_dim)
#---
fwd_so_path = TMP_DIR + get_so_name(problem.name, 0, so_suffix)
bwd_so_path = TMP_DIR + get_so_name(problem.name, h_max, so_suffix)
if not isfile(fwd_so_path) or not isfile(bwd_so_path):
print('Generating native code!')
# Forwardsolve stuff
generate_c_code(g, problem, 0, fwd_n_fixed_vars, so_suffix=so_suffix)
compile_c_code(problem.name, 0, so_suffix)
clean_up_intermediate_files()
# Backsolve stuff
generate_c_code(g, problem, h_max, bwd_n_fixed_vars, so_suffix=so_suffix)
compile_c_code(problem.name, h_max, so_suffix)
clean_up_intermediate_files()
else:
print('Using cached native code')
#---
global _fwd, _bwd
_fwd = CProblem(fwd_so_path)
_bwd = CProblem(bwd_so_path)
#---
cascading_solve(problem, h_max, so_suffix, interesting)
def fwd_n_fixed_vars(n_cons, n_vars):
# Used both by the C code generation and by the iteration logic
return max(0, n_vars - n_cons)
bwd_n_fixed_vars = None # will be set when the manifold dim is available
def __bwd_n_fixed_vars(manifold_dim, n_cons, n_vars):
dof = n_vars - n_cons
if dof > 0:
return dof
elif dof == 0:
return manifold_dim
else:
return 0
def get_manifold_dim(problem):
x_slc, r_slc = next(gen_x_r_slices(problem, 0))
n_cons, n_vars = length(r_slc.subp), length(x_slc.subp)
assert n_cons == 0 and n_vars > 0, (n_cons, n_vars)
return n_vars
#-------------------------------------------------------------------------------
@print_timing
def cascading_solve(problem, h_max, so_suffix, interesting):
# More or less copies solve_check_fixed from c_sub_check.py
meta = get_ordered_info(problem)
#---------------------------------------------------------------
# var names, bounds, solutions, and indices in x are dumped
setup_data_for_plotter(interesting, meta)
#---------------------------------------------------------------
np.random.seed(1)
x_2D, r_2D = solve_setup(problem, N_INITIAL_POINTS)
fwd_slices = [slcs for slcs in gen_x_r_slices(problem, 0)]
bwd_slices = [slcs for slcs in gen_x_r_slices(problem, h_max)]
n_slices = len(fwd_slices)
assert n_slices == len(bwd_slices), (n_slices, len(bwd_slices))
assert h_max >= 1, (h_max, 'backsolves require this')
last = n_slices - 1
lb, ub = meta.lb, meta.ub
# Initialize the torn variables
x_slc, r_slc = fwd_slices[0]
n_cons, n_vars = length(r_slc.subp), length(x_slc.subp)
assert n_cons == 0 and n_vars > 0, (n_cons, n_vars)
x_2D[:,x_slc.subp] = random_sample(lb[x_slc.subp], ub[x_slc.subp], len(x_2D))
dump_data('Initialization', 0, x_2D[:,x_slc.seen])
#
for index in range(1, last):
old_points = true_mask(len(x_2D)) # <-- The index of the last old point
n_pts = len(x_2D) # would have been sufficient
# Keep the next line here: crash due to ASAN -> we know where it happened
print('Forward')
detailed_info(problem, index, len(x_2D), meta, fwd_slices, h_max, so_suffix)
print('Backward')
detailed_info(problem, index, len(x_2D), meta, bwd_slices, h_max, so_suffix)
#dbg_x_2D = x_2D.copy() # for plotting those points where VA27 failed
#
# Do the forward solve
x_slc, r_slc = fwd_slices[index]
n_cons, n_vars = length(r_slc.subp), length(x_slc.subp)
assert n_cons > 0 and n_vars > 0, (index, n_cons, n_vars)
_fwd.solve(index, x_2D, r_2D, iprint=0)
#
# Discard the failed ones, but keep the ones with bound violations
x_2D, r_2D, mask = discard_failed_ones(x_2D, r_2D, x_slc, r_slc)
old_points = old_points[mask]
log_losses('solve failed', n_pts, len(x_2D))
#dump_data('Fwd solve failed', index, dbg_x_2D[~mask,x_slc.seen])
dump_data('After fwd solve with bound violations', index, x_2D[:,x_slc.seen])
#
# Do the backsolve which inserts new points
x_slc, r_slc = bwd_slices[index]
x_2D, r_2D, old_points = backsolve(index, x_2D, r_2D, old_points, h_max,
bwd_slices, meta)
# It is important that we discard bound violations only after backsolve
repair_bnds(index, x_2D, r_2D, lb, ub, x_slc.subp, r_slc.subp)
n_pts = len(x_2D)
x_2D, r_2D, mask = discard_failed_ones(x_2D, r_2D, x_slc, r_slc)
old_points = old_points[mask]
log_losses('solve failed and bound infeas', n_pts, len(x_2D))
dump_data('No bound violations', index, x_2D[:,x_slc.seen])
#
# Discard those newly inserted points that are too close in x_slc.new,
# but keep all old_points
selected = subsample_new_points(x_2D, x_slc.new, old_points)
x_2D, r_2D = x_2D[selected], r_2D[selected]
old_points = old_points[selected]
dump_data('After subsampling backsolve', index, x_2D[:,x_slc.seen])
#
# Diagnostics
assert x_2D.shape == r_2D.shape
assert len(old_points) == len(x_2D), 'old_points not updated properly'
# FIXME Enable dbg_violations when done with parameter tuning
#dbg_violations(index, x_2D, r_2D, x_slc, r_slc, lb, ub)
assert np.isfinite(x_2D[:,x_slc.seen]).all(), index
short_info(problem, index, n_cons, n_vars, h_max, so_suffix)
#
# Solve the final, overdetermined block
index = last
x_slc, r_slc = bwd_slices[index]
print('Backward')
detailed_info(problem, index, len(x_2D), meta, bwd_slices, h_max, so_suffix)
x_2D, r_2D = final_block(index, x_2D, r_2D, lb, ub, bwd_slices)
# Also discarded the failed and bound infeasible ones.
#
# Diagnostics
assert x_2D.shape == r_2D.shape
dbg_violations(index, x_2D, r_2D, x_slc, r_slc, lb, ub)
assert np.isfinite(x_2D[:,x_slc.seen]).all(), index
short_info(problem, index, n_cons, n_vars, h_max, so_suffix)
#===============================================================================
def backsolve(index, x_2D, r_2D, old_points, h_max, bwd_slices, meta):
x_slc, r_slc = bwd_slices[index]
if index <= h_max:
# Insert new points out of the blue
new_x_2D, new_r_2D = backsolve_initial(index, h_max, x_slc, r_slc, meta)
msg = 'After backsolve'
else:
new_x_2D, new_r_2D = perturb(index, x_2D, r_2D, h_max, bwd_slices, meta)
msg = 'After perturbation'
# Both branches discarded failed and bound infeasible points.
# WARNING: new_r_2D has NaN for those values that are not in subp!
x_2D, r_2D = np.vstack((x_2D, new_x_2D)), np.vstack((r_2D, new_r_2D))
old_points = np.hstack((old_points, false_mask(len(new_x_2D))))
dump_data(msg, index, x_2D[:,x_slc.seen])
return x_2D, r_2D, old_points
def final_block(index, x_2D, r_2D, lb, ub, bwd_slices):
# We skip the forward solve, and we don't subsample.
# Why only just clip? No good reasons: I would have to change the C codegen.
assert index == len(bwd_slices)-1, (index, len(bwd_slices))
x_slc, r_slc = bwd_slices[index]
# Assumed to be overdetermined, with no new variables:
assert length(r_slc.subp) == length(x_slc.subp) + length(r_slc.new)
assert length(x_slc.new) == 0
#dbg_x_2D = x_2D.copy() # for plotting those points where VA27 failed
print('Solving the last h_max subproblems simultaneously')
# Solve would work too but it is slower and fails more often.
#_bwd.solve(index, x_2D, r_2D, tol=TOL_LAST, iprint=0)
_bwd.solve_from(index, x_2D, r_2D, tol=TOL_LAST, iprint=0)
n_pts = len(x_2D)
x_2D, r_2D, _mask = discard_failed_ones(x_2D, r_2D, x_slc, r_slc)
log_losses('solve failed', n_pts, len(x_2D))
#dump_data('Last bwd solve failed', index, dbg_x_2D[~mask,x_slc.seen])
dump_data('After bwd solve with bound violations', index, x_2D[:,x_slc.seen])
repair_bnds(index, x_2D, r_2D, lb, ub, x_slc.subp, r_slc.subp, just_clip=True)
n_pts = len(x_2D)
x_2D, r_2D, _mask = discard_failed_ones(x_2D, r_2D, x_slc, r_slc)
log_losses('solve failed and bound infeas', n_pts, len(x_2D))
dump_data('No bound violations', index, x_2D[:,x_slc.seen])
return x_2D, r_2D
def subsample_new_points(x_2D, x_slc_new, old_points):
# Handle the edge cases
if old_points.all() and old_points.any():
warning('*** Failed to insert any new point ***')
selected = true_mask(len(old_points))
elif old_points.any():
spidx = find_splitpoint(old_points)
new_selected = subsample2(x_2D[spidx:,x_slc_new], NEW_PTS_PER_SUBP)
assert len(x_2D) == len(old_points), (len(x_2D), len(old_points))
selected = true_mask(len(old_points))
selected[spidx:] = new_selected
else:
warning('All old points were lost!')
selected = subsample2(x_2D[:,x_slc_new], NEW_PTS_PER_SUBP)
return selected
#===============================================================================
def find_splitpoint(old_points):
# FIXME We would only need to track the index of the last old point. I did
# not do this refactoring. This function assumes that there are new points,
# and that the old_points mask is [True, ..., True, False, ... False].
arr = np.select([old_points], [1,])
diffs = np.ediff1d(arr, to_begin=0)
run_ends, = np.where(diffs != 0)
old, new = np.split(arr, run_ends)
assert len(old) > 0
assert old.all()
assert len(new) > 0
assert not new.any()
return len(old)
#-------------------------------------------------------------------------------
def length(slc):
return slc.stop - slc.start
def true_mask(shape):
return np.full(shape, np.True_, np.bool_)
def false_mask(shape):
return np.full(shape, np.False_, np.bool_)
def log_losses(msg, n_pts, curr_pts):
if n_pts == 0:
assert curr_pts == 0
print('%s: (all points have been lost already)' % msg)
return
lost = n_pts - curr_pts
print('%s: %d/%d' % (msg, lost, n_pts), '(%.1f%%)' % (100.0*lost/n_pts))
def detailed_info(problem, index, n_pts, meta, x_r_slc, h_max, so_suffix):
x_slc, r_slc = x_r_slc[index]
n_cons, n_vars = length(r_slc.subp), length(x_slc.subp)
fmt = '{}, index: {}, size: {}x{}, h_max: {}, so_suffix: "{}"'
print(fmt.format(problem.name, index, n_cons, n_vars, h_max, so_suffix))
print('Number of points:', n_pts)
print('Vars:', ', '.join(meta.var_names[x_slc.subp]))
print('New: ', ', '.join(meta.var_names[x_slc.new]))
print('Cons:', ', '.join(meta.con_names[r_slc.subp]))
print('New: ', ', '.join(meta.con_names[r_slc.new]))
def short_info(problem, index, n_cons, n_vars, h_max, so_suffix):
fmt = '{}, index: {}, fwd size: {}x{}, h_max: {}, so_suffix: "{}"'
print(fmt.format(problem.name, index, n_cons, n_vars, h_max, so_suffix))
print()
def dbg_violations(index, x_2D, r_2D, x_slc, r_slc, lb, ub):
assert len(x_2D), 'Lost all points...'
for x, r in zip(x_2D, r_2D):
_bwd.evaluate(index, x, r)
con_viol = np.linalg.norm(r_2D[:,r_slc.subp].reshape(-1), ord=np.inf)
lb_, ub_ = lb[x_slc.subp], ub[x_slc.subp]
x = x_2D[:,x_slc.subp]
bnd_viol = max(0.0, (lb_-x).max(), (x-ub_).max())
assert np.isfinite(con_viol) and np.isfinite(bnd_viol), (con_viol, bnd_viol)
print('Number of points:', len(x_2D))
print('Max con viol inf:', con_viol)
print('Max con viol L2: ', np.linalg.norm(r_2D[:,r_slc.subp], axis=1).max())
print('Max bnd viol:', bnd_viol)
def discard_failed_ones(x_2D, r_2D, x_slc, r_slc):
x_new = x_2D[:,x_slc.new]
r_new = r_2D[:,r_slc.new]
x_mask = np.isfinite(x_new).all(axis=1)
r_mask = np.isfinite(r_new).all(axis=1)
mask = x_mask & r_mask
return x_2D[mask], r_2D[mask], mask
def solve_setup(problem, n_points):
n_cons, n_vars = problem.nl_header.n_cons, problem.nl_header.n_vars
x_2D = np.full((n_points, n_vars), np.nan)
r_2D = np.full((n_points, n_cons), np.nan)
return x_2D, r_2D
#-------------------------------------------------------------------------------
def nothing(*args, **kwargs):
pass
log = nothing
def perturb(index, x_2D, r_2D, h_max, bwd_slices, meta):
assert index > h_max and index < len(bwd_slices) - 1, (index, len(bwd_slices))
x_slc, r_slc = bwd_slices[index]
n_cons_subp, n_vars_subp = length(r_slc.subp), length(x_slc.subp)
assert n_cons_subp == n_vars_subp, (n_cons_subp, n_vars_subp)
lb, ub = meta.lb, meta.ub
# Downsample the point clump:
if len(x_2D) > NEW_PTS_PER_SUBP:
#x_next, _r_next = bwd_slices[index + 1]
#slc = slice(x_slc.subp.start, x_next.subp.start) # seen for the last time
selected = subsample2(x_2D[:,x_slc.subp], NEW_PTS_PER_SUBP)
x_2D, r_2D = x_2D[selected], r_2D[selected]
#
A_Ainv_J33 = get_pinv(index, x_2D, r_2D, x_slc, r_slc)
x_2D_pert, index_pert = get_linear_perturbed_pts(index, x_2D, A_Ainv_J33,
bwd_slices, lb, ub)
#
# Re-evaluate at the perturbed points, and throw away the failed ones
#---
# Make bound feasible first
#x_slc_subp = x_slc.subp
for i in range(len(x_2D_pert)):
# Small random perturbations can improve the resolution below the feedstage
# if the tolerances are too permissive; otherwise it seems to make matters worse
#x_2D_pert[i,x_slc_subp] += 0.01*np.random.randn(*(x_2D_pert[i,x_slc_subp].shape))
x_2D_pert[i] = np.clip(x_2D_pert[i], meta.lb, meta.ub)
#---
assert x_2D_pert.shape[1] == x_2D.shape[1]
r_2D_pert = np.full((len(x_2D_pert), r_2D.shape[1]), np.nan)
for x, r in zip(x_2D_pert, r_2D_pert):
_bwd.evaluate(index, x, r)
#print('Inf norm of pertubed point:', np.linalg.norm(r[r_slc.subp], np.inf))
r_subp = r_2D_pert[:,r_slc.subp]
mask = np.isfinite(r_subp).all(axis=1)
x_2D_pert, r_2D_pert, index_pert = x_2D_pert[mask], r_2D_pert[mask], index_pert[mask]
#
#print('<<<')
#print('before backsolve, perturbed points')
#dbg_violations(index, x_2D_pert, r_2D_pert, x_slc, r_slc, lb, ub)
x_2D_pert, r_2D_pert = backsolve_middle(index, x_2D_pert, r_2D_pert, index_pert,
h_max, x_slc, r_slc, meta)
#print('after backsolve, perturbed points')
#if len(x_2D_pert) > 0:
# dbg_violations(index, x_2D_pert, r_2D_pert, x_slc, r_slc, lb, ub)
#print('>>>')
dump_data('Perturbed', index, x_2D_pert[:,x_slc.seen])
return x_2D_pert, r_2D_pert
def get_pinv(index, x_2D, r_2D, x_slc, r_slc):
n_cons_subp, n_vars_subp = length(r_slc.subp), length(x_slc.subp)
x3 = length(x_slc.new)
assert length(x_slc.new)==length(r_slc.new), (x_slc, r_slc)
A_Ainv_J33 = []
for x, r in zip(x_2D, r_2D):
jac = np.full((n_cons_subp, n_vars_subp), np.nan)
_bwd.jacobian_evaluation(index, x, r, jac)
# Assumes that J33 is square
A_Ainv_J33.append((jac[:,:-x3], np.linalg.pinv(jac[:,:-x3], rcond=1.0E-4), jac[-x3:,-x3:]))
return A_Ainv_J33
def random_idx_mask(n_points, n_fixed, n_vars):
# idx in current subproblem slice, starting from 0
# Admittedly inefficient implementation
assert n_fixed <= n_vars, (n_fixed, n_vars)
assert n_fixed > 0, n_fixed
indices = np.arange(n_vars)
idx = np.full((n_points, n_fixed), -1, dtype=np.intc)
# With the mask, we want to zero out the NOT-selected elements in delta x
mask = np.full((n_points, n_vars), np.True_, dtype=bool)
for i in range(n_points):
select = np.sort(np.random.choice(indices, size=n_fixed, replace=False))
idx[i] = select
mask[i, select] = np.False_
return idx, mask
def get_linear_perturbed_pts(index, x_2D, A_Ainv_J33, bwd_slices, lb, ub):
print('Starting linear perturbations')
#
x_slc, r_slc = bwd_slices[index]
#
n_fixed = bwd_n_fixed_vars(length(r_slc.subp), length(x_slc.subp))
# indices in x_new, and not in x_subp, we will have to fix it later!
n_new = length(x_slc.new)
indices, idx_mask = random_idx_mask(N_POINTS_PERTURB, n_fixed, n_new)
values = random_sample(lb[x_slc.new], ub[x_slc.new], N_POINTS_PERTURB)
#b = np.full(length(x_slc.subp), 0.0)
#np.set_printoptions(formatter={'float': lambda x: '%.4f' % x}, linewidth=1000)
dr_norm_2D = np.full((len(x_2D), len(values)), np.nan)
x_pert_2D = np.full((len(x_2D), len(values), length(x_slc.subp)), np.nan)
for x, x_pert, dr_norm, (A, Ainv, J33) in zip(x_2D, x_pert_2D, dr_norm_2D, A_Ainv_J33):
dx_new = values - x[x_slc.new] # Sign here: A*x=b; later: setting dx_full
dx_new[idx_mask] = 0.0
perturb_C(dx_new, J33, Ainv, A, x[x_slc.subp], dr_norm, x_pert)
# # perturb_C does this loop (up until the if statement) but in C:
# for k, dx3 in enumerate(dx_new):
# b[-n_new:] = J33 @ dx3
# dx1_dx2 = Ainv @ b
# dr = A @ dx1_dx2 - b
# dr_norm[k] = np.dot(dr, dr)
# x_pert[k] = x[x_slc.subp] + np.concatenate((-dx1_dx2, dx3))
# #--------------------------------------------
# # Only for debugging:
# if dr_norm[k] < TOL_PERT*length(r_slc.subp):
# cnt += 1
# y = x.copy()
# y[x_slc.subp] = x_pert[k]
# r = np.full(x.shape, np.nan, dtype=np.double)
# _bwd.evaluate(index, y, r)
# print('y:', y[x_slc.seen])
# print('r:', r[r_slc.subp])
# print('Candidates:', cnt)
print('Candidates computed')
assert np.isfinite(x_pert_2D).all()
#print('dr_norm', dr_norm_2D.T.shape)
#print('x_pert', np.swapaxes(x_pert_2D, 0, 1).shape)
pert_x, pert_idx = [], []
offset = x_slc.new.start - x_slc.subp.start
for k, (dr_norm, x_pert) in enumerate(zip(dr_norm_2D.T, np.swapaxes(x_pert_2D, 0, 1))):
sorter = np.argsort(dr_norm, kind='mergesort')
cutoff = np.searchsorted(dr_norm, TOL_PERT*length(r_slc.subp), sorter=sorter)
cutoff = max(1, cutoff) # Always add the best point, even if not promising
small_r = sorter[:cutoff]
x_perturbed = x_2D[small_r]
x_perturbed[:,x_slc.subp] = x_pert[small_r]
idx_perturbed = np.tile(indices[k]+offset, (len(small_r), 1)) # index_pert in .subp, hence the offset
if cutoff > K_MATCHES:
# Do the downsampling here
mask = subsample2(x_perturbed[:,x_slc.new], K_MATCHES)
x_perturbed = x_perturbed[mask]
idx_perturbed = idx_perturbed[mask]
pert_x.extend(x_perturbed)
pert_idx.extend(idx_perturbed)
return np.array(pert_x), np.array(pert_idx)
def random_indices(n_points, n_fixed, indices):
# idx in current subproblem slice, starting from 0
# Admittedly inefficient implementation
assert indices.ndim == 1
assert n_fixed <= len(indices), (n_fixed, len(indices))
assert n_fixed > 0, n_fixed
idx = np.full((n_points, n_fixed), -1, dtype=np.intc)
for i in range(n_points):
idx[i] = np.sort(np.random.choice(indices, size=n_fixed, replace=False))
return idx
def idx_val_uniform(n_points, n_fixed, indices, lb_subp, ub_subp):
# idx in current subproblem slice, starting from 0
# idx must be valid indices in lb and ub (the current subprolem slice)
idx = random_indices(n_points, n_fixed, indices)
lb, ub = np.take(lb_subp, idx), np.take(ub_subp, idx)
val = np.random.uniform(lb, ub)
assert idx.shape == val.shape, (idx.shape, val.shape)
return idx, val
#-------------------------------------------------------------------------------
# In the next 3 functions the first assert tells when the function is called,
# and the second assert checks our assumptions regarding the sparsity pattern
def backsolve_initial(index, h_max, x_slc, r_slc, meta):
assert index >= 1 and index <= h_max, index
# Assumed to be underdetermined
assert length(r_slc.subp) < length(x_slc.subp)
log_on_enter(index, x_slc, r_slc, meta)
# We invent new points out of the blue
x_2D = np.full((N_POINTS_BACKSLV, len(meta.var_names)), np.nan)
r_2D = np.full((N_POINTS_BACKSLV, len(meta.con_names)), np.nan)
# The subsampling in random_sample scales poorly if n_points > 5000:
lb, ub = meta.lb, meta.ub
idx, val = fix_x_new_uniformly(lb, ub, len(x_2D), x_slc, r_slc)
#---
# # FIXME Hack!
# name = meta.problem_name
# if (name == 'mss60_4') or (name.startswith('mss60_') and index != 1):
# x1_i, x3_i = None, None
# for i in range(x_slc.new.start, x_slc.new.stop):
# name = meta.var_names[i]
# if name.startswith('x[1,'):
# print('x1:', name)
# print('idx:', i - x_slc.subp.start)
# x1_i = i - x_slc.subp.start
# if name.startswith('x[3,'):
# print('x3:', name)
# print('idx:', i - x_slc.subp.start)
# x3_i = i - x_slc.subp.start
# # idx = i - x_slc.subp.start
# n_hacked = 50 + 6
# idx[-n_hacked:,0] = x1_i - x_slc.subp.start
# val[-n_hacked:,0] = 0.0
# idx[-n_hacked:,1] = x3_i - x_slc.subp.start
# val[-n_hacked:-6,1] = np.linspace(lb[x3_i], ub[x3_i], num=n_hacked-6)
# eps = 0.005
# val[-6, 0] = ub[x1_i]
# val[-6, 1] = lb[x3_i]
# val[-5, 0] = ub[x1_i] - eps
# val[-5, 1] = lb[x3_i]
# val[-4, 0] = ub[x1_i] - 2*eps
# val[-4, 1] = lb[x3_i]
# val[-3, 0] = ub[x1_i] - eps
# val[-3, 1] = lb[x3_i] + eps
# val[-2, 0] = ub[x1_i] - 2*eps
# val[-2, 1] = lb[x3_i] + 2*eps
# val[-1, 0] = ub[x1_i] - 2*eps
# val[-1, 1] = lb[x3_i] + eps
#---
_bwd.solve_fixed(index, x_2D, r_2D, idx, val, tol=TOL_BACK)
#---
# for x, r in zip(x_2D, r_2D):
# if not np.isfinite(r[r_slc.seen]).all() or np.absolute(r[r_slc.seen]).max() > TOL_BACK:
# continue
# show_hline = True
# for i in range(x_slc.seen.start, x_slc.seen.stop):
# name, lo, up = meta.var_names[i], lb[i], ub[i]
# if x[i] < lo - 1.0e-4 or x[i] > up + 1.0e-4:
# if show_hline:
# show_hline = False
# print('---------------------------------------------------')
# if x[i] < lo - 1.0e-4:
# print('%.3f' % x[i], '<', '%.3f' % lo, ' %s' % name)
# if x[i] > up + 1.0e-4:
# print('%.3f' % x[i], '>', '%.3f' % up, ' %s' % name)
#---
return get_good_points(index, x_2D, r_2D, x_slc, r_slc, lb, ub)
def backsolve_middle(index, x_2D, r_2D, index_pert, h_max, x_slc, r_slc, meta):
assert index > h_max, index
# Assumed to be square before fixing vars:
assert length(r_slc.subp) == length(x_slc.subp) # and we fix in addition vars
log_on_enter(index, x_slc, r_slc, meta)
idx, val = fix_x_new_to_their_current_value(x_2D, x_slc.subp, index_pert)
r_2D[:] = np.nan # We do not recognize failed ones otherwise (it was evaluated)
_bwd.solve_fixed_from(index, x_2D, r_2D, idx, val, tol=TOL_PERT, iprint=0)
return get_good_points(index, x_2D, r_2D, x_slc, r_slc, meta.lb, meta.ub)
#-------------------------------------------------------------------------------
def repair_bnds(index, x_2D, r_2D, lb, ub, x_slc_subp, r_slc_subp, just_clip=False):
# x_slc and r_slc *must* be a backward slice since we call backsolve
lo, up = lb[x_slc_subp], ub[x_slc_subp]
lb_viol = np.maximum(lo - x_2D[:,x_slc_subp], 0.0)
ub_viol = np.maximum(x_2D[:,x_slc_subp] - up, 0.0)
lb_norm = np.linalg.norm(lb_viol, axis=1)
ub_norm = np.linalg.norm(ub_viol, axis=1)
err_norm = np.maximum(lb_norm, ub_norm)
error = err_norm**2 / length(x_slc_subp)
# Candidate: finite (not NaN), violated, and it is less then tol
r_finite = np.isfinite(r_2D[:,r_slc_subp]).all(axis=1)
x_finite = np.isfinite(x_2D[:,x_slc_subp]).all(axis=1)
solver_ok = x_finite & r_finite
violated = error > 0.0
small_viol= error < TOL_TRY
candidate = solver_ok & violated & small_viol
too_bad = solver_ok & violated & ~small_viol
x_2D[too_bad, x_slc_subp] = np.nan
r_2D[too_bad, r_slc_subp] = np.nan
print('Bound violation too large:', too_bad.sum())
print('Trying to repair', candidate.sum(), 'points')
# Try the dumb clipping first
(indices,) = np.where(candidate)
project_back_to_box(index, x_2D, r_2D, x_slc_subp, r_slc_subp, indices, lo, up)
clipping_fixed = np.isfinite(r_2D[candidate, r_slc_subp]).all(axis=1)
print('Clipping fixed:', clipping_fixed.sum())
if just_clip:
return
# We try again, but now with the local solver. We fix the |J| most violated
# variables; if we have less, we pick the remaining ones at random.
try_again = np.compress(~np.isfinite(r_2D[indices,r_slc_subp]).all(axis=1), indices)
card_J = bwd_n_fixed_vars(length(r_slc_subp), length(x_slc_subp))
assert card_J > 0, (card_J, index) # Must call with a backward slice!
bnd_viol = np.maximum(lb_viol, ub_viol)
for i in try_again:
x, r, viol = x_2D[i], r_2D[i], bnd_viol[i]
idx = np.argsort(viol, kind='quicksort')[-card_J:] # quicksort makes a random choice for us
idx = np.sort(idx)
val = x[x_slc_subp][idx]
x.shape = (1, x.shape[0])
r.shape = (1, r.shape[0])
idx = np.array(idx, dtype=np.intc)
idx.shape = (1, idx.shape[0])
val.shape = (1, val.shape[0])
_bwd.solve_fixed_from(index, x, r, idx, val, tol=TOL_ACCEPT, iprint=0)
# We still have to clip them again!
project_back_to_box(index, x_2D, r_2D, x_slc_subp, r_slc_subp, try_again, lo, up)
solver_repaired = np.isfinite(r_2D[try_again, r_slc_subp]).all(axis=1)
print('Solver repaired:', solver_repaired.sum())
# assert that all succeeded points are bound feasible
succeeded = np.isfinite(r_2D[:,r_slc_subp]).all(axis=1)
x_2D_good = x_2D[succeeded,x_slc_subp]
bound_feas = (lo <= x_2D_good).all(axis=1) & (x_2D_good <= up).all(axis=1)
assert bound_feas.all()
def project_back_to_box(index, x_2D, r_2D, x_slc_subp, r_slc_subp, indices, lo, up):
x_2D[indices,x_slc_subp] = np.clip(x_2D[indices,x_slc_subp], lo, up)
for i in indices:
x, r = x_2D[i], r_2D[i]
_bwd.evaluate(index, x, r)
resid = r[r_slc_subp]
error = np.dot(resid, resid) / len(resid)
if (not np.isfinite(resid).all()) or (error >= TOL_ACCEPT):
r[r_slc_subp] = np.nan
#-------------------------------------------------------------------------------
# FIXME Grep for x_new and fix: we are fixing only a random subset of it
def _x_new_indices(x_slc):
offset = x_slc.subp.start
start, stop = x_slc.new.start - offset, x_slc.new.stop - offset
assert start > 0, start
assert stop <= length(x_slc.subp), (stop, length(x_slc.subp))
indices = np.arange(start, stop)
return indices
def fix_x_new_uniformly(lb, ub, n_points, x_slc, r_slc):
# backsolve initial
n_fixed = bwd_n_fixed_vars(length(r_slc.subp), length(x_slc.subp))
indices = _x_new_indices(x_slc)
return idx_val_uniform(n_points, n_fixed, indices, lb[x_slc.subp], ub[x_slc.subp])
def random_sample(lb, ub, n_points):
x = np.random.uniform(lb, ub, (K_OVERSAMPLE*n_points, len(lb)))
mask = subsample2(x, n_points)
return x[mask]
def fix_x_new_to_their_current_value(x_2D, x_slc_subp, idx):
# backsolve middle
val = np.full(idx.shape, np.nan)
for i, (x_val, indices) in enumerate(zip(x_2D[:, x_slc_subp], idx)):
val[i] = x_val[indices]
return idx, val
def log_on_enter(index, x_slc, r_slc, meta):
global log # don't forget: log = nothing in get_good_points()
log = print
log()
log('### In backsolve ###')
log('index:', index)
log('size: {}x{}'.format(length(r_slc.subp), length(x_slc.subp)))
log('fixed:', bwd_n_fixed_vars(length(r_slc.subp), length(x_slc.subp)))
log('bwd vars:', ', '.join(meta.var_names[x_slc.subp]))
log('bwd cons:', ', '.join(meta.con_names[r_slc.subp]))
log('x_new: ', ', '.join(meta.var_names[x_slc.new]))
log()
def get_good_points(index, x_2D_orig, r_2D_orig, x_slc, r_slc, lb, ub):
global log
n_points = len(x_2D_orig)
repair_bnds(index, x_2D_orig, r_2D_orig, lb, ub, x_slc.subp, r_slc.subp)
x_2D, r_2D, _mask = discard_failed_ones(x_2D_orig, r_2D_orig, x_slc, r_slc)
log_losses('solve failed and bound infeas', n_points, len(x_2D))
log('### End of backsolve ###')
log()
log = nothing
return x_2D, r_2D
#-------------------------------------------------------------------------------
PLOTTER_DIR = '/tmp/plotter/'
def clean_plotter_dir():
if isdir(PLOTTER_DIR):
for f in glob(PLOTTER_DIR + '*'):
remove(f)
else:
mkdir(PLOTTER_DIR)
def setup_data_for_plotter(interesting, meta, delete_dir=True):
if delete_dir:
clean_plotter_dir()
lb, ub, sol_2D = meta.lb, meta.ub, meta.sol_2D
name_to_xindex = meta.name_to_xindex
indices = np.fromiter((name_to_xindex[n] for n in interesting), np.int)
v_min = np.min(lb[indices])
v_max = np.max(ub[indices])
print('x bounds for plotting:', v_min, v_max)
print('indices to watch in x:', indices)
dump('name.txt', meta.problem_name)
dump('varnames.txt', '\n'.join(interesting))
dump('bounds.txt', '%f %f\n' % (v_min, v_max))
np.save(PLOTTER_DIR + 'indices_in_x.npy', indices)
write_name_to_index_map('name_to_index_map.txt', name_to_xindex)
np.save(PLOTTER_DIR + 'solutions.npy', sol_2D)
print()
def dump(fname, string):
with open(PLOTTER_DIR + fname, 'w') as f:
f.write(string)
def write_name_to_index_map(fname, name_to_xindex):
lst = list('%s %d\n' % (k, v) for k, v in sorted(name_to_xindex.items()))
with open(PLOTTER_DIR + fname, 'w') as f:
f.writelines(lst)
def dump_data(msg, index, x_2D_slc):
file_index = 1000*index + dump_data.counter
dump_data.counter += 1
msg += ' (index=%d, n_pts=%d)' % (index, x_2D_slc.shape[0])
with open(PLOTTER_DIR + 't_%d.txt' % file_index, 'w') as f:
f.write(msg)
np.save(PLOTTER_DIR + 'x_%d.npy' % file_index, x_2D_slc)
dump_data.counter = 0
#-------------------------------------------------------------------------------
OrderedInfo = namedtuple('OrderedInfo', '''problem_name con_names var_names
sol_2D lb ub name_to_xindex''')
def get_ordered_info(problem):
var_order = var_idx_order(problem)
lbs, ubs = get_var_bnds(problem)
colnames = problem.col_names
name_to_xindex = dict(zip(colnames, var_order))
n_vars = problem.nl_header.n_vars
perm = np.array(var_order, np.int)
perm = invert_permutation(perm)
# perm: from AMPL order to permuted order
var_names = names_ordered(colnames, perm)
lb, ub = bounds_ordered(lbs, ubs, perm)
sol_2D = solutions_ordered(problem.solutions, n_vars, perm)
# constraints:
con_perm = np.array(con_idx_order(problem), np.int)
con_perm = invert_permutation(con_perm)
con_names = names_ordered(problem.row_names, con_perm)
return OrderedInfo(problem_name=problem.name, con_names=con_names,
var_names=var_names, sol_2D=sol_2D, lb=lb, ub=ub,
name_to_xindex=name_to_xindex)
def bounds_ordered(lbs, ubs, perm):
return to_ndarray(lbs)[perm], to_ndarray(ubs)[perm]
def solutions_ordered(solutions, n_vars, perm):
sol_2D = np.full((len(solutions), n_vars), np.nan)
for i, sol in enumerate(solutions):
sol_2D[i,:] = to_ndarray(sol)[perm]
return sol_2D
def names_ordered(list_of_strings, perm):
return to_str_ndarray(list_of_strings)[perm]
def invert_permutation(p):
'''The argument p is assumed to be some permutation of 0, 1, ..., len(p)-1.
Returns an array s, where s[i] gives the index of i in p.'''
s = np.empty(p.size, p.dtype)
s[p] = np.arange(p.size)
return s
def to_ndarray(list_of_strings):
return np.fromiter(map(float, list_of_strings), np.double)
def to_str_ndarray(list_of_strings):
max_len = max(map(len, list_of_strings))
return np.fromiter(list_of_strings, 'S%d' % max_len).astype('U')
#-------------------------------------------------------------------------------
if __name__ == '__main__':
main()