-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathspur_search.py
192 lines (160 loc) · 6.58 KB
/
spur_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# spur_search.py
#
# Copyright 2014 Balint Seeber <[email protected]>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
# MA 02110-1301, USA.
#
#
import math
import numpy
import interface
def get_spurs(bins, freq_min, freq_max, snr=6.0, percent_noise_bins=80.0):
"""
Get a list of bins sticking out of the noise floor
NOTE: This routine assumes flat noise floor with most bins as noise
@param snr the number of db a bin needs to stick out of the noise floor
@param percent_noise_bins is the minimum percentage of fft bins expected to be noise
"""
h = numpy.histogram(bins, numpy.arange(min(bins), max(bins), float(snr)/2.0))
#print len(h[0]), h[0]
#print len(h[1]), h[1]
percent = 0.0
for i in range(len(h[0])):
percent += 100.0 * float(h[0][i])/float(len(h[0]))
if percent > percent_noise_bins: break
threshold = h[1][min(len(h[1])-1,i+2)]
def _bin_to_freq(idx):
freq_range = float(freq_max - freq_min)
return idx * freq_range / (len(bins) - 1) + freq_min
spurs = list()
for i in range(len(bins)):
if bins[i] > threshold: spurs.append((_bin_to_freq(i), bins[i]))
return spurs
class SpurSearch(interface.Module):
def __init__(self, config, options, *args, **kwds):
interface.Module.__init__(self, config, options, *args, **kwds)
self.spur_log_file = None
self.noise_log_file = None
self.total_spur_count = 0
def __del__(self):
if self.spur_log_file: self.spur_log_file.close()
if self.noise_log_file: self.noise_log_file.close()
def populate_options(self, parser):
parser.add_option("--spur-log", type="string", default=None, help="Spur log file [default=%default]")
parser.add_option("--ignore-lo", action="store_true", help="Ignore LO spur", default=False)
parser.add_option("--lo-tolerance", type="float", default=7.5e3, help="Ignore LO spur +/- from DC (Hz) [default: %default]")
parser.add_option("--spur-snr", type="float", default=1.0, help="Spur threshold above noise floor (dB) [default: %default]")
parser.add_option("--only-save-spurs", action="store_true", default=False, help="Only save image when spurs are detected [default: %default]")
parser.add_option("--noise-log", type="string", default=None, help="Noise floor log file [default=%default]")
def init(self, usrp, info, states, state_machines, fft_graph, scope_graph):
interface.Module.init(self, usrp, info, states, state_machines, fft_graph, scope_graph)
if not self.spur_log_file and self.options.spur_log is not None and len(self.options.spur_log) > 0:
self.spur_log_file = open(self.options.spur_log, "w")
if not self.noise_log_file and self.options.noise_log is not None and len(self.options.noise_log) > 0:
self.noise_log_file = open(self.options.noise_log, "w")
def start(self, count, current_hw_states):
interface.Module.start(self, count, current_hw_states)
self.total_spur_count = 0
def query_stop(self, channel_idx, state_machine, hw_state):
return (state_machine.loops > 0)
def query_fft(self, sample_idx, hw_state):
return True
def process(self, sample_idx, hw_state, s, fft_data, partial_name, fft_channel_graph, scope_channel_graph):
spurs_detected = []
lo_spurs = []
noise = None
freq_min = hw_state.freq - self.config.rate/2
freq_max = hw_state.freq + self.config.rate/2
fft_avg = fft_data['ave']
hz_per_bin = math.ceil(self.config.rate / len(fft_avg))
lo_bins = int(math.ceil(self.options.lo_tolerance / hz_per_bin))
#print "Skipping %i LO bins" % (lo_bins)
lhs = fft_avg[0:((len(fft_avg) + 1)/2) - ((lo_bins-1)/2)]
rhs = fft_avg[len(fft_avg)/2 + ((lo_bins-1)/2):]
#print len(fft_avg), len(lhs), len(rhs)
fft_minus_lo = numpy.concatenate((lhs, rhs))
#noise = numpy.average(numpy.array(fft_minus_lo))
noise = 10.0 * math.log10(numpy.average(10.0 ** (fft_minus_lo / 10.0))) # dB
print ("\t[%i] Noise (skipped %i LO FFT bins)" % (sample_idx, lo_bins)), noise, "dB"
lo_freq = hw_state.freq + hw_state.lo_offset
fig_name = "fft-%s.png" % (partial_name) # Same as scanner.py
if self.noise_log_file:
self.noise_log_file.write("%d,%d,%f,%f,%f,%s,%f,%s\n" % (
self.last_count,
sample_idx,
hw_state.freq,
lo_freq,
hw_state.gain,
hw_state.get_antenna(),
noise,
fig_name,
))
spurs = get_spurs(fft_avg, freq_min, freq_max) # snr=6.0, percent_noise_bins=80.0
spur_threshold = noise + self.options.spur_snr
for spur_freq, spur_level in spurs:
if spur_level > spur_threshold:
if self.options.ignore_lo and abs(lo_freq - spur_freq) < self.options.lo_tolerance:
#print "\t[%i]\tLO @ %f MHz (%03f dBm) for LO %f MHz (offset %f Hz)" % (channel, spur_freq, spur_level, lo_freq, (spur_freq-lo_freq))
lo_spurs += [(spur_freq, spur_level)]
else:
spurs_detected += [(spur_freq, spur_level)]
#d = {
# 'id': id,
# 'spur_level': spur_level,
# 'spur_freq': spur_freq,
# 'lo_freq': lo_freq,
# 'channel': channel,
# 'noise_floor': noise,
#}
#print '\t\tSpur:', d
print "\t[%i]\tSpur @ %f Hz (%03f dBFS) for LO %f MHz (offset %f Hz)" % (
sample_idx,
spur_freq,
spur_level,
lo_freq,
(spur_freq-lo_freq)
)
if self.spur_log_file:
self.spur_log_file.write("%d,%d,%f,%f,%f,%s\n" % (
self.last_count,
sample_idx,
spur_freq,
spur_level,
lo_freq,
fig_name,
))
self.total_spur_count += 1
if fft_channel_graph is not None:
fft_channel_graph.add_points(spurs_detected)
fft_channel_graph.add_horz_line(noise, 'gray', '--', id='noise')
fft_channel_graph.add_horz_line(spur_threshold, 'gray', '-', id='spur_threshold')
fft_channel_graph.add_points(lo_spurs, 'go')
def query_save(self, which):
if which == 'fft_graph':
if self.options.only_save_spurs:
return (self.total_spur_count > 0)
return None
def shutdown(self):
return
def get_modules():
return [{'class':SpurSearch, 'name':"Spur Search"}]
def main():
return 0
if __name__ == '__main__':
main()