forked from robustness-gym/summvis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
summvis.py
323 lines (273 loc) · 10.1 KB
/
summvis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import argparse
import json
import operator
import os
import re
from pathlib import Path
import spacy
import spacy.lang.en
import streamlit as st
from meerkat import DataPanel
from spacy.tokens import Doc
from align import NGramAligner, BertscoreAligner, StaticEmbeddingAligner
from components import MainView
from utils import clean_text
MIN_SEMANTIC_SIM_THRESHOLD = 0.1
MAX_SEMANTIC_SIM_TOP_K = 10
Doc.set_extension("name", default=None, force=True)
Doc.set_extension("column", default=None, force=True)
class Instance():
def __init__(self, id_, document, reference, preds, data=None):
self.id = id_
self.document = document
self.reference = reference
self.preds = preds
self.data = data
@st.cache(allow_output_mutation=True)
def load_from_index(filename, index):
with open(filename) as f:
for i, line in enumerate(f):
if i == index:
return json.loads(line.strip())
def _nlp_key(x: spacy.Language):
return str(x.path)
@st.cache(allow_output_mutation=True, hash_funcs={spacy.lang.en.English: _nlp_key})
def load_dataset(path: str, nlp: spacy.Language):
if path.endswith('.jsonl'):
return DataPanel.from_jsonl(path)
try:
return DataPanel.read(path, nlp=nlp)
except NotADirectoryError:
return DataPanel.from_jsonl(path)
@st.cache(allow_output_mutation=True)
def get_nlp():
try:
nlp = spacy.load("en_core_web_lg")
except:
nlp = spacy.load("en_core_web_sm")
is_lg = False
else:
is_lg = True
nlp.add_pipe('sentencizer', before="parser")
return nlp, is_lg
def retrieve(dataset, index, filename=None):
if index >= len(dataset):
st.error(f"Index {index} exceeds dataset length.")
eval_dataset = None
if filename:
# TODO Handle this through dedicated fields
if "cnn_dailymail" in filename:
eval_dataset = "cnndm"
elif "xsum" in filename:
eval_dataset = "xsum"
data = dataset[index]
id_ = data.get('id', '')
try:
document = data['spacy:document']
except KeyError:
if not is_lg:
st.error("'en_core_web_lg model' is required unless loading from cached file."
"To install: 'python -m spacy download en_core_web_lg'")
try:
text = data['document']
except KeyError:
text = data['article']
if not text:
st.error("Document is blank")
return
document = nlp(text if args.no_clean else clean_text(text))
document._.name = "Document"
document._.column = "document"
try:
reference = data['spacy:summary:reference']
except KeyError:
if not is_lg:
st.error("'en_core_web_lg model' is required unless loading from cached file."
"To install: 'python -m spacy download en_core_web_lg'")
try:
text = data['summary'] if 'summary' in data else data['summary:reference']
except KeyError:
text = data.get('highlights')
if text:
reference = nlp(text if args.no_clean else clean_text(text))
else:
reference = None
if reference is not None:
reference._.name = "Reference"
reference._.column = "summary:reference"
model_names = set()
for k in data:
m = re.match('(preprocessed_)?summary:(?P<model>.*)', k)
if m:
model_name = m.group('model')
if model_name != 'reference':
model_names.add(model_name)
preds = []
for model_name in model_names:
try:
pred = data[f"spacy:summary:{model_name}"]
except KeyError:
if not is_lg:
st.error("'en_core_web_lg model' is required unless loading from cached file."
"To install: 'python -m spacy download en_core_web_lg'")
text = data[f"summary:{model_name}"]
pred = nlp(text if args.no_clean else clean_text(text))
parts = model_name.split("-")
primary_sort = 0
if len(parts) == 2:
model, train_dataset = parts
if train_dataset == eval_dataset:
formatted_model_name = model.upper()
else:
formatted_model_name = f"{model.upper()} ({train_dataset.upper()}-trained)"
if train_dataset in ["xsum", "cnndm"]:
primary_sort = 1
else:
primary_sort = 2
else:
formatted_model_name = model_name.upper()
pred._.name = formatted_model_name
pred._.column = f"summary:{model_name}"
preds.append(
((primary_sort, formatted_model_name), pred)
)
preds = [pred for _, pred in sorted(preds)]
return Instance(
id_=id_,
document=document,
reference=reference,
preds=preds,
data=data,
)
def filter_alignment(alignment, threshold, top_k):
filtered_alignment = {}
for k, v in alignment.items():
filtered_matches = [(match_idx, score) for match_idx, score in v if score >= threshold]
if filtered_matches:
filtered_alignment[k] = sorted(filtered_matches, key=operator.itemgetter(1), reverse=True)[:top_k]
return filtered_alignment
def select_comparison(example):
all_summaries = []
if example.reference:
all_summaries.append(example.reference)
if example.preds:
all_summaries.extend(example.preds)
from_documents = [example.document]
if example.reference:
from_documents.append(example.reference)
document_names = [document._.name for document in from_documents]
select_document_name = sidebar_placeholder_from.selectbox(
label="Comparison FROM:",
options=document_names
)
document_index = document_names.index(select_document_name)
selected_document = from_documents[document_index]
remaining_summaries = [summary for summary in all_summaries if
summary._.name != selected_document._.name]
remaining_summary_names = [summary._.name for summary in remaining_summaries]
selected_summary_names = sidebar_placeholder_to.multiselect(
'Comparison TO:',
remaining_summary_names,
remaining_summary_names
)
selected_summaries = []
for summary_name in selected_summary_names:
summary_index = remaining_summary_names.index(summary_name)
selected_summaries.append(remaining_summaries[summary_index])
return selected_document, selected_summaries
def show_main(example):
# Get user input
semantic_sim_type = st.sidebar.radio(
"Semantic similarity type:",
["Contextual embedding", "Static embedding"]
)
semantic_sim_threshold = st.sidebar.slider(
"Semantic similarity threshold:",
min_value=MIN_SEMANTIC_SIM_THRESHOLD,
max_value=1.0,
step=0.1,
value=0.2,
)
semantic_sim_top_k = st.sidebar.slider(
"Semantic similarity top-k:",
min_value=1,
max_value=MAX_SEMANTIC_SIM_TOP_K,
step=1,
value=10,
)
document, summaries = select_comparison(example)
layout = st.sidebar.radio("Layout:", ["Vertical", "Horizontal"]).lower()
scroll = True
gray_out_stopwords = st.sidebar.checkbox(label="Gray out stopwords", value=True)
# Gather data
try:
lexical_alignments = [
example.data[f'{NGramAligner.__name__}:spacy:{document._.column}:spacy:{summary._.column}']
for summary in summaries
]
except KeyError:
lexical_alignments = NGramAligner().align(document, summaries)
if semantic_sim_type == "Static embedding":
try:
semantic_alignments = [
example.data[f'{StaticEmbeddingAligner.__name__}:spacy:{document._.column}:spacy:{summary._.column}']
for summary in summaries
]
except KeyError:
semantic_alignments = StaticEmbeddingAligner(
semantic_sim_threshold,
semantic_sim_top_k).align(
document,
summaries
)
else:
try:
semantic_alignments = [
example.data[f'{BertscoreAligner.__name__}:spacy:{document._.column}:spacy:{summary._.column}']
for summary in summaries
]
except KeyError:
semantic_alignments = BertscoreAligner(semantic_sim_threshold,
semantic_sim_top_k).align(document,
summaries)
MainView(
document,
summaries,
semantic_alignments,
lexical_alignments,
layout,
scroll,
gray_out_stopwords,
).show(height=720)
if __name__ == "__main__":
st.set_page_config(layout="wide")
parser = argparse.ArgumentParser()
parser.add_argument('--path', type=str, default='data')
parser.add_argument('--no_clean', action='store_true', default=False,
help="Do not clean text (remove extraneous spaces, newlines).")
args = parser.parse_args()
nlp, is_lg = get_nlp()
path = Path(args.path)
path_dir = path.parent
all_files = set(map(os.path.basename, path_dir.glob('*')))
files = sorted([
fname for fname in all_files if not (fname.endswith(".py") or fname.startswith("."))
])
if path.is_file:
try:
file_index = files.index(path.name)
except:
raise FileNotFoundError(f"File not found: {path.name}")
else:
file_index = 0
col1, col2 = st.beta_columns((3, 1))
filename = col1.selectbox(label="File:", options=files, index=file_index)
dataset = load_dataset(str(path_dir / filename), nlp=nlp)
dataset_size = len(dataset)
query = col2.number_input(f"Index (Size: {dataset_size}):", value=0, min_value=0, max_value=dataset_size - 1)
sidebar_placeholder_from = st.sidebar.empty()
sidebar_placeholder_to = st.sidebar.empty()
if query is not None:
example = retrieve(dataset, query, filename)
if example:
show_main(example)