-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
154 lines (122 loc) · 4.43 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import wandb
def make_dataloaders(root="./mnist_data/", batch_size=64):
# MNIST Dataset
train_dataset = datasets.MNIST(
root=root, train=True, transform=transforms.ToTensor(), download=True
)
test_dataset = datasets.MNIST(
root=root, train=False, transform=transforms.ToTensor(), download=False
)
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset, batch_size=batch_size, shuffle=True
)
test_loader = torch.utils.data.DataLoader(
dataset=test_dataset, batch_size=batch_size, shuffle=False
)
return train_loader, test_loader
class VAE(nn.Module):
def __init__(self, x_dim, h_dim1, h_dim2, z_dim):
super(VAE, self).__init__()
# encoder part
self.fc1 = nn.Linear(x_dim, h_dim1)
self.fc2 = nn.Linear(h_dim1, h_dim2)
self.fc31 = nn.Linear(h_dim2, z_dim)
self.fc32 = nn.Linear(h_dim2, z_dim)
# decoder part
self.fc4 = nn.Linear(z_dim, h_dim2)
self.fc5 = nn.Linear(h_dim2, h_dim1)
self.fc6 = nn.Linear(h_dim1, x_dim)
def encoder(self, x):
h = F.relu(self.fc1(x))
h = F.relu(self.fc2(h))
return self.fc31(h), self.fc32(h) # mu, log_var
def sampling(self, mu, log_var):
std = torch.exp(0.5 * log_var)
eps = torch.randn_like(std)
return eps.mul(std).add_(mu) # return z sample
def decoder(self, z):
h = F.relu(self.fc4(z))
h = F.relu(self.fc5(h))
return F.sigmoid(self.fc6(h))
def forward(self, x):
mu, log_var = self.encoder(x.view(-1, 784))
z = self.sampling(mu, log_var)
return self.decoder(z), mu, log_var
# return reconstruction error + KL divergence losses
def loss_function(recon_x, x, mu, log_var):
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction="sum")
KLD = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())
return BCE + KLD
def train():
if not os.path.exists("models"):
os.makedirs("models")
# Training configuration
default_config = dict(epochs=15, batch_size=64, dim1=512, optimizer="adam")
wandb.init(project="mnist-vae", config=default_config)
# Create dataloaders
train_loader, test_loader = make_dataloaders(
batch_size=wandb.config.batch_size
)
# Create network
vae = VAE(
x_dim=784,
h_dim1=wandb.config.dim1,
h_dim2=wandb.config.dim1 // 2,
z_dim=2,
)
# Define optimizer
if wandb.config.optimizer == "adam":
optimizer = optim.Adam(vae.parameters())
else:
optimizer = optim.SGD(vae.parameters(), lr=0.01, momentum=0.5)
wandb.watch(vae, log="all")
# Generate random samples of latent space
z = torch.randn(64, 2)
# Epoch loop
for epoch in range(default_config["epochs"]):
# Train 1 epoch
vae.train()
train_loss = 0
for batch_idx, (data, _) in enumerate(train_loader):
data = data
optimizer.zero_grad()
recon_batch, mu, log_var = vae(data)
loss = loss_function(recon_batch, data, mu, log_var)
loss.backward()
train_loss += loss.item()
optimizer.step()
# Log to wandb every 100 batches
if batch_idx % 10 == 0:
wandb.log(dict(epoch=epoch, train_loss=loss.item() / len(data)))
# Test
vae.eval()
test_loss = 0
with torch.no_grad():
for data, _ in test_loader:
data = data
recon, mu, log_var = vae(data)
test_loss += loss_function(recon, data, mu, log_var).item()
test_loss /= len(test_loader.dataset)
wandb.log(dict(test_loss=test_loss))
# Checkpoint model
path = f"models/model_ckpt_epoch={epoch}.pt"
torch.save(vae.state_dict(), path)
artifact = wandb.Artifact(
"model", type="model", description="VAE model checkpoint"
)
artifact.add_file(path)
wandb.log_artifact(artifact)
# Create sample predictions
with torch.no_grad():
sample = vae.decoder(z)
collage = sample.view(64, 1, 28, 28)
wandb.log(dict(samples=wandb.Image(collage)))
if __name__ == "__main__":
train()