-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_e2e.py
228 lines (204 loc) · 8.72 KB
/
test_e2e.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# 需要确定测试集组成
# 推荐组成:所有的task,所有的env,所有的type联合,测三遍
task_list = ["MakeBreakfast", "MakeCoffee", "ArrangeRoom"]
import copy
import json
import ray
from ray.rllib.models import ModelCatalog
from ray.rllib.utils.framework import try_import_tf, try_import_torch
from ray.rllib.algorithms.ppo import PPOConfig
from ray.tune.logger import pretty_print
from ray.rllib.algorithms.algorithm import Algorithm
import json
from env.symbolic_env import SymbolicEnv
from model.helper_v3 import HelperModel
from env.type import sample_type
from env.task import sample_task
from model.end2end import End2End
from model.helper_without_super import HelperModelWithoutSupervise
from model.helper_v4 import HelperModelV4
from env.goal import GOAL_NUM
from model.helper_dep import HelperModelDep
from model.end2end import End2End
import pandas as pd
import random
tf1, tf, tfv = try_import_tf()
torch, nn = try_import_torch()
controller_kwargs = {
}
config = {
'agents_num': 2,
# 'agents_type': {0: AgentType.AGENT_WITH_FULL_CAPABILITIES, 1: AgentType.AGENT_WITH_TOGGLE_ISSUES},
'agents_type': {0: [2, 2, 1, 1, 1, 1], 1: sample_type()},
'main_agent_id': 1,
'mode': 'train',
'controller_kwargs': {
"agentCount": 2,
"scene": 'FloorPlan2',
"local_executable_path": "/home/zhihao/下载/thor-Linux64-local/thor-Linux64-local",
# "local_executable_path": "/home/zhihao/A2SP/thor-Linux64-local/thor-Linux64-local",
"renderDepthImage": True,
"renderInstanceSegmentation": True,
"visibilityDistance": 30,
"quality": "Very Low",
# "platform": "CloudRendering",
},
'task': sample_task(),
}
if __name__ == "__main__":
total_dict = {}
task_dict = {}
ModelCatalog.register_custom_model(
"helper", HelperModel
)
ModelCatalog.register_custom_model(
"e2e", End2End
)
ModelCatalog.register_custom_model(
"helperwithoutsuper", HelperModelWithoutSupervise
)
ModelCatalog.register_custom_model(
"helperv4", HelperModelV4
)
ModelCatalog.register_custom_model(
"helperdep", HelperModelDep
)
ray.init()
position_list = []
# 3. 定义测试环境
test_env = SymbolicEnv(config=config)
algo = Algorithm.from_checkpoint('/home/zhihao/Downloads/ours_e2e/349')
print("======================THE CHECK POINT ======================")
# exit(0)
# 4. 运行测试
# only the left 10 scenarios
num_episodes = 30
SR_list = []
GSR_list = []
CR_list = []
HE_list = []
HN_list = []
reward_list = []
eposide_len_list = []
SPL_list = []
helping_num = 0
need_help_num = 0
for task in task_list:
task_dict[task] = {}
for type_index in range(7):
if task == "MakeBreakfast" and type_index in [6]:
continue
elif task == "MakeCoffee" and type_index in [2, 3, 6]:
continue
elif task == "ArrangeRoom" and type_index in [4, 5, 6]:
continue
task_dict[task][type_index] = {}
tmp_SR_list = []
tmp_GSR_list = []
tmp_CR_list = []
tmp_HE_list = []
tmp_HN_list = []
tmp_reward_list = []
tmp_eposide_len_list = []
tmp_SPL_list = []
tmp_helping_num = 0
tmp_need_help_num = 0
for env_index in range(10):
for _ in range(3):
observation, _ = test_env.reset(env_index=env_index + 21, task=task, type=type_index)
if test_env.need_help:
tmp_need_help_num += 1
lstm_state = algo.get_policy().get_initial_state()
done = False
episode_reward = 0
while not done:
action, lstm_state, _ = algo.compute_single_action(observation, state=lstm_state)
observation, reward, done, _, _ = test_env.step(action)
episode_reward += reward
print("Evaluation")
eposide_len = test_env.step_count
SR = int(not (test_env.step_count == 30))
print("SR :", SR)
if test_env.goal_num == 0:
GSR = 0
else:
GSR = test_env.finish_goal_num / test_env.goal_num
print("GSR:", GSR)
if test_env.helper_finish_goal_num == 0:
if SR == 1:
HN = -1
else:
# 为了help_num的计算,取一个特殊的值,实际上应为0
HN = -2
else:
HN = test_env.helper_finish_necc_goal_num / test_env.helper_finish_goal_num
print("HN :", HN)
if HN == -1:
pass
else:
if HN != -2:
tmp_helping_num += 1
# 将特殊值转为实际上的0
if HN == -2:
HN = 0
tmp_HN_list.append(HN)
tmp_SR_list.append(SR)
tmp_GSR_list.append(GSR)
print(f"Total Reward = {episode_reward}")
SPL = SR * (test_env.goal_num / max(test_env.goal_num, test_env.step_count))
tmp_reward_list.append(episode_reward)
tmp_eposide_len_list.append(eposide_len)
tmp_SPL_list.append(SPL)
task_dict[task][type_index]['SR'] = copy.deepcopy(tmp_SR_list)
task_dict[task][type_index]['GSR'] = copy.deepcopy(tmp_GSR_list)
task_dict[task][type_index]['CR'] = copy.deepcopy(tmp_CR_list)
task_dict[task][type_index]['HE'] = copy.deepcopy(tmp_HE_list)
task_dict[task][type_index]['HN'] = copy.deepcopy(tmp_HN_list)
task_dict[task][type_index]['helping_num'] = copy.deepcopy(tmp_helping_num)
task_dict[task][type_index]['need_help_num'] = copy.deepcopy(tmp_need_help_num)
task_dict[task][type_index]['reward'] = copy.deepcopy(tmp_reward_list)
task_dict[task][type_index]['eposide_len'] = copy.deepcopy(tmp_eposide_len_list)
task_dict[task][type_index]['SPL'] = copy.deepcopy(tmp_SPL_list)
print("=======END=======")
print(f"task: {task}, type: {type_index}")
print("average_SR : ", sum(tmp_SR_list) / len(tmp_SR_list))
print("average_GSR: ", sum(tmp_GSR_list) / len(tmp_GSR_list))
# print("average_CR : ", sum(tmp_CR_list) / len(tmp_CR_list))
# print("average_HE : ", sum(tmp_HE_list) / max(len(tmp_HE_list), 1))
print("average_HN : ", sum(tmp_HN_list) / max(len(tmp_HN_list), 1))
print("average_reward: ", sum(tmp_reward_list) / len(tmp_reward_list))
print("average_eposide_len: ", sum(tmp_eposide_len_list) / len(tmp_eposide_len_list))
print("average_SPL: ", sum(tmp_SPL_list) / len(tmp_SPL_list))
print("helping_num : ", tmp_helping_num)
print("need_help_num:", tmp_need_help_num)
SR_list = SR_list + tmp_SR_list
GSR_list = GSR_list + tmp_GSR_list
CR_list = CR_list + tmp_CR_list
HE_list = HE_list + tmp_HE_list
HN_list = HN_list + tmp_HN_list
reward_list = reward_list + tmp_reward_list
eposide_len_list = eposide_len_list + tmp_eposide_len_list
SPL_list = SPL_list + tmp_SPL_list
helping_num += tmp_helping_num
need_help_num += tmp_need_help_num
print("=======END=======")
print("average_SR : ", sum(SR_list) / len(SR_list))
print("average_GSR: ", sum(GSR_list) / len(GSR_list))
print("average_HN : ", sum(HN_list) / max(len(HN_list), 1))
print("average_reward: ", sum(reward_list) / len(reward_list))
print("average_eposide_len: ", sum(eposide_len_list) / len(eposide_len_list))
print("average_SPL: ", sum(SPL_list) / len(SPL_list))
print("helping_num : ", helping_num)
print("need_help_num:", need_help_num)
total_dict['SR'] = SR_list
total_dict['GSR'] = GSR_list
total_dict['HN'] = HN_list
total_dict['helping_num'] = helping_num
total_dict['need_help_num'] = need_help_num
total_dict['reward'] = reward_list
total_dict['eposide_len'] = eposide_len_list
total_dict['SPL'] = SPL_list
with open("total.json", "w") as json_file:
json.dump(total_dict, json_file)
with open("task.json", "w") as json_file:
json.dump(task_dict, json_file)