-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_opp.py
271 lines (235 loc) · 10.6 KB
/
test_opp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# 需要确定测试集组成
# 推荐组成:所有的task,所有的env,所有的type联合,测三遍
task_list = ["MakeBreakfast", "MakeCoffee", "ArrangeRoom"]
import os
import time
import copy
import json
import csv
#from ray.rllib.utils.framework import try_import_tf, try_import_torch
import cv2
import json
import numpy as np
from env.symbolic_env import SymbolicEnv
from env.type import sample_type
from env.task import sample_task
from env.subtask import subtask_list
from env.goal import goal_list
from model.classifier_dep import Classifier_OppenentModeling_v2
from mcts_helper import run_mcts
import concurrent.futures
import pandas as pd
from torch import tensor
import random
from env.subtask import SUBTASK_NUM, subtask_list
from env.goal import GOAL_NUM
# tf1, tf, tfv = try_import_tf()
# torch, nn = try_import_torch()
import torch
import torch.nn as nn
TEST_SUBTASK_PREDICTION = True
controller_kwargs = {
}
config = {
'agents_num': 2,
'agents_type': {0: [2, 2, 1, 1, 1, 1], 1: sample_type()},
'main_agent_id': 1,
'mode': 'train',
'controller_kwargs': {
"agentCount": 2,
"scene": 'FloorPlan2',
"local_executable_path": "/home/zhihao/Downloads/thor-Linux64-local/thor-Linux64-local",
"renderDepthImage": True,
"renderInstanceSegmentation": True,
"visibilityDistance": 30,
"quality": "Very Low",
},
'task': sample_task(),
}
if __name__ == "__main__":
total_dict = {}
task_dict = {}
position_list = []
# 3. 定义测试环境
test_env = SymbolicEnv(config=config)
classifier = Classifier_OppenentModeling_v2()
if torch.cuda.is_available():
classifier = classifier.cuda()
tmp_env = SymbolicEnv(config=config)
OBJ_NUM = len(test_env.object_index2name)
# exit(0)
# 4. 运行测试
num_episodes = 30
SR_list = []
GSR_list = []
CR_list = []
HE_list = []
HN_list = []
episode_len_list = []
SPL_list = []
helping_num = 0
need_help_num = 0
list_results = [['env', 'type', 'task', 'ground_truth', 'predicted_subtask']]
for task in task_list:
task_dict[task] = {}
for type_index in range(0, 1):
if task == "MakeBreakfast" and type_index in [6]:
continue
elif task == "MakeCoffee" and type_index in [2, 3, 6]:
continue
elif task == "ArrangeRoom" and type_index in [4, 5, 6]:
continue
task_dict[task][type_index] = {}
tmp_SR_list = []
tmp_GSR_list = []
tmp_CR_list = []
tmp_HE_list = []
tmp_HN_list = []
tmp_episode_len_list = []
tmp_SPL_list = []
tmp_helping_num = 0
tmp_need_help_num = 0
# type_index == 6: full capability
for env_index in range(0, 10):
data = np.zeros((1, 5, 32, 15))
observation, _ = test_env.reset(env_index=env_index + 21, task=task, type=type_index)
if test_env.need_help:
tmp_need_help_num += 1
done = False
episode_reward = 0
action_seq = []
while not done:
data[:, :4] = data[:, 1:]
data[:, 4] = observation
if torch.cuda.is_available():
input_matrix = torch.from_numpy(data).cuda().float()
subtask_predict, tar_index_1_predict, tar_index_2_predict, type_predict = classifier(input_matrix)
subtask_predict = subtask_list[torch.argmax(subtask_predict).item()]
tar_index_1_predict = test_env.object_index2name[torch.argmax(tar_index_1_predict).item()]
tar_index_2_predict = test_env.object_index2name[torch.argmax(tar_index_2_predict).item()]
# MCTS here
# Set mode
action_name = random.randint(0, GOAL_NUM - 1)
tar_index = random.randint(0, len(test_env.object_name2index)-1)
action = {
"goal": action_name,
"tar_index": tar_index
}
predicted_subtask = [subtask_predict, tar_index_1_predict, tar_index_2_predict]
list_results.append([env_index, type_index, test_env.task, test_env.subtask_list[0], predicted_subtask])
# Test ground truth
#predicted_subtask = test_env.subtask_list[0]
print(f'Testing env: {env_index}, type: {type_index}, task: {test_env.task}, predicted_subtask: {predicted_subtask}')
# tmp_env.reset(env_index=env_index + 21, task=task, type=type_index)
# # Params here
# if TEST_SUBTASK_PREDICTION:
# action = run_mcts(tmp_env, action_seq, predicted_subtask, type_predict, num_sim=1, sample_prob=0.0)
# else:
# action = run_mcts(tmp_env, action_seq, predicted_subtask, type_predict, num_sim=1, sample_prob=0.0)
action_seq.append(action)
print(f"Taking action {action['goal']}-{goal_list[action['goal']]} \
with obj {action['tar_index']}-{test_env.object_index2name[action['tar_index']]}")
observation, reward, done, _, _ = test_env.step(action)
episode_reward += reward
if test_env.check_task():
print('Task complete!')
done = True
if test_env.step_count >= 30:
done = True
# time.sleep(1)
#print(test_env.step_count)
print("Evaluation")
episode_len = test_env.step_count
SR = int(not (test_env.step_count >= 30))
print("SR :", SR)
if test_env.goal_num == 0:
GSR = 0
else:
GSR = test_env.finish_goal_num / test_env.goal_num
print("GSR:", GSR)
if test_env.finish_goal_num == 0:
CR = 0
else:
CR = test_env.helper_finish_goal_num / test_env.finish_goal_num
print("CR :", CR)
if test_env.helper_action_num == 0:
HE = -1
else:
HE = test_env.helper_finish_required_action_num / test_env.helper_action_num
print("HE :", HE)
if test_env.helper_finish_goal_num == 0:
HN = -1
print("HN :", -1)
else:
HN = test_env.helper_finish_necc_goal_num / test_env.helper_finish_goal_num
print("HN :", HN)
if HN == -1:
pass
else:
tmp_helping_num += 1
tmp_HE_list.append(HE)
tmp_HN_list.append(HN)
tmp_SR_list.append(SR)
tmp_GSR_list.append(GSR)
tmp_CR_list.append(CR)
#print(f"Total Reward = {episode_reward}")
SPL = SR * (test_env.goal_num / max(test_env.goal_num, test_env.step_count))
tmp_episode_len_list.append(episode_len)
tmp_SPL_list.append(SPL)
task_dict[task][type_index]['SR'] = copy.deepcopy(tmp_SR_list)
task_dict[task][type_index]['GSR'] = copy.deepcopy(tmp_GSR_list)
task_dict[task][type_index]['CR'] = copy.deepcopy(tmp_CR_list)
task_dict[task][type_index]['HE'] = copy.deepcopy(tmp_HE_list)
task_dict[task][type_index]['HN'] = copy.deepcopy(tmp_HN_list)
task_dict[task][type_index]['helping_num'] = copy.deepcopy(tmp_helping_num)
task_dict[task][type_index]['need_help_num'] = copy.deepcopy(tmp_need_help_num)
task_dict[task][type_index]['episode_len'] = copy.deepcopy(tmp_episode_len_list)
task_dict[task][type_index]['SPL'] = copy.deepcopy(tmp_SPL_list)
print("=======END=======")
print(f"task: {task}, type: {type_index}")
print("average_SR : ", sum(tmp_SR_list) / len(tmp_SR_list))
print("average_GSR: ", sum(tmp_GSR_list) / len(tmp_GSR_list))
print("average_CR : ", sum(tmp_CR_list) / len(tmp_CR_list))
print("average_HE : ", sum(tmp_HE_list) / max(len(tmp_HE_list), 1))
print("average_HN : ", sum(tmp_HN_list) / max(len(tmp_HN_list), 1))
print("average_episode_len: ", sum(tmp_episode_len_list) / len(tmp_episode_len_list))
print("average_SPL: ", sum(tmp_SPL_list) / len(tmp_SPL_list))
print("helping_num : ", tmp_helping_num)
print("need_help_num:", tmp_need_help_num)
SR_list = SR_list + tmp_SR_list
GSR_list = GSR_list + tmp_GSR_list
CR_list = CR_list + tmp_CR_list
HE_list = HE_list + tmp_HE_list
HN_list = HN_list + tmp_HN_list
episode_len_list = episode_len_list + tmp_episode_len_list
SPL_list = SPL_list + tmp_SPL_list
helping_num += tmp_helping_num
need_help_num += tmp_need_help_num
print("=======END=======")
print("average_SR : ", sum(SR_list) / len(SR_list))
print("average_GSR: ", sum(GSR_list) / len(GSR_list))
print("average_CR : ", sum(CR_list) / len(CR_list))
print("average_HE : ", sum(HE_list) / max(len(HE_list), 1))
print("average_HN : ", sum(HN_list) / max(len(HN_list), 1))
print("average_eposide_len: ", sum(episode_len_list) / len(episode_len_list))
print("average_SPL: ", sum(SPL_list) / len(SPL_list))
print("helping_num : ", helping_num)
print("need_help_num:", need_help_num)
total_dict['SR'] = SR_list
total_dict['GSR'] = GSR_list
total_dict['CR'] = CR_list
total_dict['HE'] = HE_list
total_dict['HN'] = HN_list
total_dict['helping_num'] = helping_num
total_dict['need_help_num'] = need_help_num
total_dict['episode_len'] = episode_len_list
total_dict['SPL'] = SPL_list
if TEST_SUBTASK_PREDICTION:
with open("subtask_prediction_results.csv", "w", newline="") as csvfile:
writer = csv.writer(csvfile)
for row in list_results:
writer.writerow(row)
with open("total.json", "w") as json_file:
json.dump(total_dict, json_file)
with open("task.json", "w") as json_file:
json.dump(task_dict, json_file)