-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkeras_vgg_face.py
110 lines (80 loc) · 3.18 KB
/
keras_vgg_face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# tensorflow compiling
# https://stackoverflow.com/a/54048937
#
# https://github.com/fo40225/tensorflow-windows-wheel
# https://github.com/fo40225/tensorflow-windows-wheel/blob/master/1.12.0/py36/CPU/avx2/tensorflow-1.12.0-cp36-cp36m-win_amd64.whl
from keras.applications.vgg16 import VGG16
from keras_vggface.vggface import VGGFace
image_size = 224
face_model = VGGFace(model='vgg16',
weights='vggface',
input_shape=(224,224,3))
face_model.summary()
for layer in face_model.layers:
layer.trainable = False
from keras.models import Model, Sequential
from keras.layers import Input, Convolution2D, ZeroPadding2D, MaxPooling2D, Flatten, Dense, Dropout, Activation
person_count = 5
last_layer = face_model.get_layer('pool5').output
x = Flatten(name='flatten')(last_layer)
x = Dense(1024, activation='relu', name='fc6')(x)
x = Dense(1024, activation='relu', name='fc7')(x)
out = Dense(person_count, activation='softmax', name='fc8')(x)
custom_face = Model(face_model.input, out)
from keras.preprocessing.image import ImageDataGenerator
batch_size = 5
train_path = 'data/'
eval_path = 'eval/'
train_datagen = ImageDataGenerator(rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
valid_datagen = ImageDataGenerator(rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
train_generator = train_datagen.flow_from_directory(
train_path,
target_size=(image_size,image_size),
batch_size=batch_size,
class_mode='sparse',
color_mode='rgb')
valid_generator = valid_datagen.flow_from_directory(
directory=eval_path,
target_size=(224, 224),
color_mode='rgb',
batch_size=batch_size,
class_mode='sparse',
shuffle=True,
)
"""
from keras.optimizers import SGD
custom_face.compile(loss='sparse_categorical_crossentropy',
optimizer=SGD(lr=1e-4, momentum=0.9),
metrics=['accuracy'])
history = custom_face.fit_generator(
train_generator,
validation_data=valid_generator,
steps_per_epoch=49/batch_size,
validation_steps=valid_generator.n,
epochs=50)
custom_face.evaluate_generator(valid_generator, (10/batch_size))
custom_face.save('vgg_face.h5')
"""
# test
from keras.models import load_model
from keras.preprocessing.image import load_img, save_img, img_to_array
from keras_vggface.utils import preprocess_input
import numpy as np
custom_face = load_model('vgg_face.h5')
test_img = load_img('eval/json_statham/8.jpg', target_size=(224, 224))
img_test = img_to_array(test_img)
img_test = np.expand_dims(img_test, axis=0)
img_test = preprocess_input(img_test)
predictions = custom_face.predict(img_test)
print(person_count)
predicted_class=np.argmax(predictions,axis=1)
labels = (train_generator.class_indices)
labels = dict((v,k) for k,v in labels.items())
predictions = [labels[k] for k in predicted_class]
print(predictions)