forked from oftheheadland/prodgannt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgannt_data_prep.py
129 lines (116 loc) · 3.8 KB
/
gannt_data_prep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"""
This module will convert exported product data in .xlsx format
from EPA/ORD's RAPID system into a Google Chart GANNT format
https://developers.google.com/chart/interactive/docs/gallery/ganttchart#data-format
and write it to csv so it can be loaded into the productgannt.html
This module can be run with a -F or --File parameter with the name of the file name in the RAPID
export file name in the gannt_data folder
"""
import pandas as pd
import os
import json
import argparse
GGcols = ['Task ID',
'Task Name',
'Start',
'End',
'Resource',
'Duration',
'Percent Complete',
'Dependencies']
def convertFYQtodate(fyq):
"""
Converts a pandas Series with string values like 'FY22 Q4' to dates
:param fyq:
:return:
"""
qs = fyq.str.replace('FY', '20')
qs = qs.str.replace(' ','-')
dt = pd.PeriodIndex(qs, freq='Q').to_timestamp()
dt = dt + pd.offsets.QuarterEnd(0)
return dt
def convertFYQfieldstodates(df):
fields = ['Product Planned Delivery Date','Subproduct Delivery FY-Quarter']
for f in fields:
if f in df.columns:
df[f] = convertFYQtodate(df[f])
#convert timestamps to dates
othdate = "Product Start Date"
if othdate in df.columns:
fields.append(othdate)
for f in fields:
df[f] = pd.to_datetime(df[f])
df[f] = df[f].dt.strftime("%Y-%m-%d")
return df
def split_id_from_name(id_w_name):
df = id_w_name.str.split(':',n=1,expand=True)
return df
def select_product_or_subproduct_fields(row):
"""
Adds a Task field to a row and assigns it product or subproduct name
:param row:
:return:
"""
if pd.isnull(row["Subproduct"]):
row['Task'] = row['Product']
row['End'] = row['Product Planned Delivery Date']
row["Resource"] = "Product"
else:
row['Task'] = row['Subproduct']
row['End'] = row['Subproduct Delivery FY-Quarter']
row["Resource"] = "Subproduct"
row['Start'] = row['Product Start Date']
return(row)
def merge_product_subproduct(df):
df['Resource'] = ''
df = df.apply(select_product_or_subproduct_fields, axis=1)
return(df)
def splitnamefields(df):
fields = ['Task']
for f in fields:
if f in df.columns:
df_id_name = split_id_from_name(df[f])
df_id_name.columns = ['Task ID','Task Name']
df = df.drop(columns=f)
df = pd.concat([df,df_id_name],axis=1)
return df
def loadandcleanRAPIDexport(rapidsubproductsexport):
"""
:param rapidsubproductsexport: an Excel file name with ".xlsx" extention
:return:
"""
exportfile = os.path.realpath("gannt_data/"+ rapidsubproductsexport)
df = pd.read_excel(exportfile,na_values=["-"])
df = convertFYQfieldstodates(df)
df = merge_product_subproduct(df)
df = splitnamefields(df)
return df
def formatRAPIDproductsforGG(rapidsubproductsexport):
"""
:param rapidsubproductsexport: an
:return:
"""
df = loadandcleanRAPIDexport(rapidsubproductsexport)
df["Duration"] = None
df["Percent Complete"] = None
df["Dependencies"] = None
df = df[GGcols]
df = df.drop_duplicates()
return df
# def formatforGG(df):
# #convert timestamps to simple date
#
# dl = df.values.tolist()
# cols = df.columns.tolist()
# dl.insert(0,cols)
# tempdata = json.dumps(dl)
# return tempdata
if __name__ == '__main__':
parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS)
parser.add_argument('-F', '--File',
help = 'The file to extract from.',
type = str,
required = True)
args = vars(parser.parse_args())
rapid_tasks = formatRAPIDproductsforGG(args['File'])
rapid_tasks.to_csv("gannt_data/rapid_tasks.csv", index=False)