-
Notifications
You must be signed in to change notification settings - Fork 8
/
detect_mask_picture.py
89 lines (70 loc) · 2.97 KB
/
detect_mask_picture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model
import tensorflow
import numpy as np
import argparse
import cv2
import os
parser = argparse.ArgumentParser()
parser.add_argument("-i", "--image", required=True, help="Path to image")
parser.add_argument("-f", "--face", type=str, default="simple_face_detector")
parser.add_argument("-m", "--model", type=str, default="mask_detector.model",
help="Path to trained face mask detector model")
parser.add_argument("-c", "--confidence", type=float, default=0.5,
help="Minimum probability to filter weak detection")
args = vars(parser.parse_args())
def load():
proto = os.path.sep.join([args["face"], "deploy.prototxt"])
weights = os.path.sep.join([args["face"], "res10_300x300_ssd_iter_140000.caffemodel"])
net = cv2.dnn.readNet(proto, weights)
model = load_model(args["model"])
return model, net
def process(model, net):
image = cv2.imread(args["image"])
origne = image.copy()
(h, w) = image.shape[:2]
blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300),
(104.0, 177.0, 123.0))
net.setInput(blob)
detections = net.forward()
for i in range(0, detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > args["confidence"]:
box = detections[0, 0, i, 3:7] * np.array([w,h,w,h])
(startX, startY, endX, endY) = box.astype("int")
(startX, startY) = (max(0, startX), max(0, startY))
(endX, endY) = (min(w-1, endX), min(h-1, endY))
# extract face ROI, convert it to RGB channel
face = image[startY:endY, startX:endX]
face = cv2.flip(face, 1)
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
face = cv2.resize(face, (224,224))
face = img_to_array(face)
face = preprocess_input(face)
face = np.expand_dims(face, axis=0)
#pass the face through the model to determince if the face has a mask or not
(mask, withoutMask) = model.predict(face)[0]
label = "Mask" if mask > withoutMask else "No Mask"
color = (0, 255, 0) if label == "Mask" else (0, 0, 255)
label = "{}: {:.2f}%".format(label, max(mask, withoutMask)*100)
cv2.putText(image, label, (startX, startY-10),
cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)
cv2.rectangle(image, (startX, startY), (endX, endY), color, 2)
cv2.imshow("Ouput", image)
if cv2.waitKey(0) == ord('Q'):
cv2.destroyAllWindows()
if __name__ == '__main__':
gpus = tensorflow.config.experimental.list_physical_devices('GPU')
print("------------"+str(len(tensorflow.config.experimental.list_physical_devices('CPU'))))
if len(gpus) == 0:
gpu = tensorflow.config.experimental.list_physical_devices('CPU')
try:
tensorflow.config.experimental.set_virtual_device_configuration(gpus[0],
[tensorflow.config.experimental.VirtualDeviceConfiguration(memory_limit=2048)])
print(" - [x]: Load the model from disk... ->")
model, net = load()
print(" - [x]: Trying to predict ... ->")
process(model, net)
except Exception as e:
raise e