-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathCarDetectionLive.py
239 lines (194 loc) · 7.25 KB
/
CarDetectionLive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Based on
# https://gist.github.com/lukeyeager/777087991419d98700054cade2f755e6
#--------------------------------------------------------------------
# CarDetectionLive one runs DetectNet on Live USB Camera (TX1 Tested)
import cv2
import numpy as np
import argparse
import os
import time
from google.protobuf import text_format
import scipy.misc
os.environ['GLOG_minloglevel'] = '2' # Suppress most caffe output
import caffe
from caffe.proto import caffe_pb2
def get_net(caffemodel, deploy_file, use_gpu=True):
"""
Returns an instance of caffe.Net
Arguments:
caffemodel -- path to a .caffemodel file
deploy_file -- path to a .prototxt file
Keyword arguments:
use_gpu -- if True, use the GPU for inference
"""
if use_gpu:
caffe.set_mode_gpu()
# load a new model
return caffe.Net(deploy_file, caffemodel, caffe.TEST)
def get_transformer(deploy_file, mean_file=None):
"""
Returns an instance of caffe.io.Transformer
Arguments:
deploy_file -- path to a .prototxt file
Keyword arguments:
mean_file -- path to a .binaryproto file (optional)
"""
network = caffe_pb2.NetParameter()
with open(deploy_file) as infile:
text_format.Merge(infile.read(), network)
if network.input_shape:
dims = network.input_shape[0].dim
else:
dims = network.input_dim[:4]
t = caffe.io.Transformer(
inputs = {'data': dims}
)
t.set_transpose('data', (2,0,1)) # transpose to (channels, height, width)
# color images
if dims[1] == 3:
# channel swap
t.set_channel_swap('data', (2,1,0))
if mean_file:
# set mean pixel
with open(mean_file,'rb') as infile:
blob = caffe_pb2.BlobProto()
blob.MergeFromString(infile.read())
if blob.HasField('shape'):
blob_dims = blob.shape
assert len(blob_dims) == 4, 'Shape should have 4 dimensions - shape is "%s"' % blob.shape
elif blob.HasField('num') and blob.HasField('channels') and \
blob.HasField('height') and blob.HasField('width'):
blob_dims = (blob.num, blob.channels, blob.height, blob.width)
else:
raise ValueError('blob does not provide shape or 4d dimensions')
pixel = np.reshape(blob.data, blob_dims[1:]).mean(1).mean(1)
t.set_mean('data', pixel)
return t
def resize_img(image, height, width):
"""
Resizes the image to detectnet inputs
Arguments:
image -- a single image
height -- height of the network input
width -- width of the network input
"""
image = np.array(image)
image = scipy.misc.imresize(image, (height, width), 'bilinear')
return image
def draw_bboxes(image, locations):
"""
Draws the bounding boxes into an image
Arguments:
image -- a single image already resized
locations -- the location of the bounding boxes
"""
for left,top,right,bottom,confidence in locations:
if confidence==0:
continue
cv2.rectangle(image,(left,top),(right,bottom),(255,0,0),3)
#cv2.imwrite('bbox.png',image)#test on a single image
return image
def forward_pass(image, net, transformer, batch_size=None):
"""
Returns scores for each image as an np.ndarray (nImages x nClasses)
Arguments:
image -- a list of np.ndarrays
net -- a caffe.Net
transformer -- a caffe.io.Transformer
Keyword arguments:
batch_size -- how many images can be processed at once
(a high value may result in out-of-memory errors)
"""
if batch_size is None:
batch_size = 1
caffe_images = []
if image.ndim == 2:
caffe_images.append(image[:,:,np.newaxis])
else:
caffe_images.append(image)
dims = transformer.inputs['data'][1:]
scores = None
for chunk in [caffe_images[x:x+batch_size] for x in xrange(0, len(caffe_images), batch_size)]:
new_shape = (len(chunk),) + tuple(dims)
if net.blobs['data'].data.shape != new_shape:
net.blobs['data'].reshape(*new_shape)
for index, image in enumerate(chunk):
image_data = transformer.preprocess('data', image)
net.blobs['data'].data[index] = image_data
start = time.time()
output = net.forward()[net.outputs[-1]]
end = time.time()
if scores is None:
scores = np.copy(output)
else:
scores = np.vstack((scores, output))
print 'Processed %s/%s images in %f seconds ...' % (len(scores), len(caffe_images), (end - start))
return scores
def classify(caffemodel, deploy_file, image,
mean_file=None, batch_size=None, use_gpu=True):
"""
Classify some images against a Caffe model and print the results
Arguments:
caffemodel -- path to a .caffemodel
deploy_file -- path to a .prototxt
image_files -- list of paths to images
Keyword arguments:
mean_file -- path to a .binaryproto
use_gpu -- if True, run inference on the GPU
"""
# Load the model
net = get_net(caffemodel, deploy_file, use_gpu)
transformer = get_transformer(deploy_file, mean_file)
_, channels, height, width = transformer.inputs['data']
if channels == 3:
mode = 'RGB'
elif channels == 1:
mode = 'L'
else:
raise ValueError('Invalid number for channels: %s' % channels)
image = resize_img(image,height,width)
# Classify the image
scores = forward_pass(image, net, transformer, batch_size=batch_size)
### Process the results
# Format of scores is [ batch_size x max_bbox_per_image x 5 (xl, yt, xr, yb, confidence) ]
# https://github.com/NVIDIA/caffe/blob/v0.15.13/python/caffe/layers/detectnet/clustering.py#L81
for i, image_results in enumerate(scores):
#print '==> Image #%d' % i
img_result = draw_bboxes(image,image_results)
# This line is optinal, in this case we resize to the size of the original input video, can be removed
img_result = resize_img(img_result,720,1280)
return img_result
def detect_car(image):
"""
Runs our pipeline given a single image and returns another one with the bounding boxes drawn
Arguments:
image -- cv2 image file
"""
result = classify(args['caffemodel'], args['deploy_file'], image,
args['mean'], args['batch_size'], not args['nogpu'])
return result
if __name__ == '__main__':
global args
script_start_time = time.time()
capture = cv2.VideoCapture(0)
parser = argparse.ArgumentParser(description='DetectNet Live - DIGITS')
### Positional arguments
parser.add_argument('caffemodel', help='Path to a .caffemodel')
parser.add_argument('deploy_file', help='Path to the deploy file')
### Optional arguments
parser.add_argument('-m', '--mean',
help='Path to a mean file (*.npy)')
parser.add_argument('--batch-size',
type=int)
parser.add_argument('--nogpu',
action='store_true',
help="Don't use the GPU")
args = vars(parser.parse_args())
while(True):
ret, frame = capture.read()
result = detect_car(frame)
cv2.imshow('frame',result)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()