This document describes a process to extract, clean-up, and run the R code from:
Quantitative Microbial Risk Assessment, 2nd Edition by Charles N. Haas, Joan B. Rose, and Charles P. Gerba. (Wiley, 2014).
This is the copyright statement for the book:
© Haas, Charles N.; Rose, Joan B.; Gerba, Charles P., Jun 02, 2014, Quantitative Microbial Risk Assessment Wiley, Somerset, ISBN: 9781118910528
We have been licensed by Wiley to post the R-code "figures" from the book on https://github.com/brianhigh/envh543.
Here is our RightsLink license number:
License Date: Mar 18, 2016
License Number: 3831970414111
Type Of Use: Website
The R-code has been modified so that it will run and will be more readable. The
original code snippets published in the book were generally too buggy to use
without these modifications. The most common error was to use < -
for
assignment instead of <-
. These issues resulted in unrecoverable errors. These
and other errors have been fixed in the code below.
The text book is available as an eBook from UW Libraries.
The PDF was created by printing select pages from EBL Reader and saving the result as PDF.
An alternative way to extract the pages containing R code using bash
is to use
wget
to fetch the PDF ebook file from the web and extract pages with pdftk
.
For this, we can use a link the PDF ebook file on the web as provided by Wiley.
wget -O QMRA2.pdf 'https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118910030'
pdftk QMRA2.pdf cat 234 257 259 321 338-340 342 output QMRA2_extract.pdf
These bash
commands will extract the R code from the PDF and list the figures.
pdftotext \
"QMRA2_extract.pdf" \
"QMRA2_extract.txt"
egrep -i 'R function|R code|R listing|listing in R|code snippet' \
"QMRA2_extract.txt"
After that, any extra text may be removed using a text editor.
- Figure 6.17 R functions for solution of Example 6.9. (p. 228)
- Figure 7.10 R code to compute generalized logistic growth equation. (p. 251)
- Figure 7.11 R listing for fitting Listeria data. (p. 253)
- Figure 8.14 Program listing in R to compute best-fit parameters. (p. 315)
- Figure 9.5 R code for bootstrap analysis of mean density for data in Table 6.5. (p. 333)
- Figure 9.7 R code for determining the posterior distribution for the negative binomial. (p. 334)
- Figure 9.9 Code snippet for generating samples from posterior for negative binomial. (p. 337)
# Clear the workspace, unless you are running in knitr context.
if (!isTRUE(getOption('knitr.in.progress'))) {
closeAllConnections()
rm(list = ls())
}
Define a function to auto-install and load required packages.
# Load one or more packages into memory, installing as needed.
load.pkgs <- function(pkgs, repos = "http://cran.r-project.org") {
result <- sapply(pkgs, function(pkg) {
if (!suppressWarnings(require(pkg, character.only = TRUE))) {
install.packages(pkg, quiet = TRUE, repos = repos)
library(pkg, character.only = TRUE)}})
}
Use the this function to load the packages we will need.
# Load packages, installing as needed.
load.pkgs(c("deSolve", "boot", "cubature", "lattice"))
From: CHAPTER 6 EXPOSURE ASSESSMENT, p. 228
Figure 6.17 R functions for solution of Example 6.9.
# © Haas, Charles N.; Rose, Joan B.; Gerba, Charles P., Jun 02, 2014,
# Quantitative Microbial Risk Assessment Wiley, Somerset, ISBN: 9781118910528
volume <- c(0.032, 0.026, 0.021, 0.018, 0.016, 0.011, 0.005)
n <- c(29, 30, 28, 30, 29, 25, 30)
p <- c(7, 4, 3, 4, 2, 2, 2)
mu_i <- -(1 / volume) * log((n - p) / n)
data <- data.frame(volume, n, p, mu_i)
LnL <- function(guess, data) {
tmp <- volume * (guess - mu_i) * (n - p) - p *
log((1 - exp(-guess * volume)) / (1 - exp(-mu_i * volume)))
sum(tmp)
}
LnL(1, data)
## [1] 26.98308
best <-
optim(
.5, LnL, gr = NULL, method = 'BFGS', control = list(trace = 12, REPORT = 1)
)
## initial value 41.888275
## iter 2 value 2.241312
## iter 3 value 2.086770
## iter 4 value 1.200017
## iter 5 value 1.055462
## iter 6 value 1.023437
## iter 7 value 1.023008
## iter 8 value 1.023007
## iter 9 value 1.023006
## iter 9 value 1.023006
## iter 9 value 1.023006
## final value 1.023006
## converged
show(best)
## $par
## [1] 6.948856
##
## $value
## [1] 1.023006
##
## $counts
## function gradient
## 14 9
##
## $convergence
## [1] 0
##
## $message
## NULL
From: TYPES OF GROWTH PROCESSES, p. 251
Figure 7.10 R code to compute generalized logistic growth equation.
# © Haas, Charles N.; Rose, Joan B.; Gerba, Charles P., Jun 02, 2014,
# Quantitative Microbial Risk Assessment Wiley, Somerset, ISBN: 9781118910528
library("deSolve")
genlogist <- function(t, N, params) {
# Generalized logistic with zero, one, two and three parameters
# (other than k and K)
k <- params[1]
K <- params[2]
theta1 <- 1
theta2 <- 1
theta3 <- 1
model <- params[6]
if (model > 0)
theta1 <- params[3]
if (model > 1)
theta2 <- params[4]
if (model > 2)
theta3 <- params[5]
dydt <- k * (N^theta2) * (1 - (N / K)^theta1)^theta3
list(dydt)
}
# Should be equal to the number of thetas <> 1
model <- 3
10 -> k
1e6 -> K
.7 -> theta1
.3 -> theta2
.5 -> theta3
params <- c(k, K, theta1, theta2, theta3, model)
N0 <- 1e1
times <- seq(0, 8, by = 0.1)
y <- ode(N0, times, genlogist, params, method = 'adams')
plot(y, log = "y")
print(y)
## time 1
## 1 0.0 10.00000
## 2 0.1 12.05308
## 3 0.2 14.21708
## 4 0.3 16.48483
## 5 0.4 18.85035
## 6 0.5 21.30850
## 7 0.6 23.85483
## 8 0.7 26.48544
## 9 0.8 29.19687
## 10 0.9 31.98601
## 11 1.0 34.85007
## 12 1.1 37.78652
## 13 1.2 40.79304
## 14 1.3 43.86750
## 15 1.4 47.00796
## 16 1.5 50.21261
## 17 1.6 53.47976
## 18 1.7 56.80786
## 19 1.8 60.19545
## 20 1.9 63.64115
## 21 2.0 67.14368
## 22 2.1 70.70183
## 23 2.2 74.31446
## 24 2.3 77.98049
## 25 2.4 81.69889
## 26 2.5 85.46869
## 27 2.6 89.28897
## 28 2.7 93.15885
## 29 2.8 97.07748
## 30 2.9 101.04407
## 31 3.0 105.05784
## 32 3.1 109.11807
## 33 3.2 113.22406
## 34 3.3 117.37511
## 35 3.4 121.57060
## 36 3.5 125.80988
## 37 3.6 130.09237
## 38 3.7 134.41748
## 39 3.8 138.78465
## 40 3.9 143.19335
## 41 4.0 147.64305
## 42 4.1 152.13326
## 43 4.2 156.66349
## 44 4.3 161.23326
## 45 4.4 165.84212
## 46 4.5 170.48963
## 47 4.6 175.17536
## 48 4.7 179.89889
## 49 4.8 184.65982
## 50 4.9 189.45776
## 51 5.0 194.29232
## 52 5.1 199.16314
## 53 5.2 204.06985
## 54 5.3 209.01211
## 55 5.4 213.98957
## 56 5.5 219.00189
## 57 5.6 224.04876
## 58 5.7 229.12986
## 59 5.8 234.24487
## 60 5.9 239.39350
## 61 6.0 244.57545
## 62 6.1 249.79043
## 63 6.2 255.03817
## 64 6.3 260.31839
## 65 6.4 265.63081
## 66 6.5 270.97519
## 67 6.6 276.35126
## 68 6.7 281.75877
## 69 6.8 287.19747
## 70 6.9 292.66713
## 71 7.0 298.16751
## 72 7.1 303.69837
## 73 7.2 309.25950
## 74 7.3 314.85067
## 75 7.4 320.47166
## 76 7.5 326.12225
## 77 7.6 331.80225
## 78 7.7 337.51145
## 79 7.8 343.24963
## 80 7.9 349.01662
## 81 8.0 354.81220
From: TYPES OF GROWTH PROCESSES, p. 253
Figure 7.11 R listing for fitting Listeria data.
# © Haas, Charles N.; Rose, Joan B.; Gerba, Charles P., Jun 02, 2014,
# Quantitative Microbial Risk Assessment Wiley, Somerset, ISBN: 9781118910528
# Fit listeria data - 1.5o skim milk
# Xanthiakos, K., D. Simos, A. S. Angelidis, G. J. Nychas and K. Koutsoumanis (2006).
# "Dynamic modeling of Listeria monocytogenes growth in pasteurized milk."
# Journal of Applied Microbiology 100(6): 1289-1298.
# Time in hours
time <-
c(0, 143.39622, 260.37735, 383.01886, 500, 598.11322, 696.22644,
792.45282, 884.90564, 1052.8302, 1205.6604, 1371.69812)
# N CFU/mL
N <-
c(5204.991205, 5972.002763, 4536.49044, 4859.258466, 12719.79172,
12719.79172, 31084.22186, 84211.22791, 300337.8033, 4859258.466,
25292397.58, 61807332.42)
A <- data.frame(time=time, N=N, lnN=log(N))
attach(A)
## The following objects are masked _by_ .GlobalEnv:
##
## N, time
#---------------------------------------------
ObjFunc <- function(paramsin) {
# Computes ESS
if (modell==0) {
paramsin["theta1"] <- 1
paramsin["theta2"] <- 1
paramsin["theta3"] <- 1}
if (modell==1) {
paramsin["theta2"] <- 1
paramsin["theta3"] <- 1}
if (modell==2) {
paramsin["theta3"] <- 1}
params <-
c(exp(paramsin["lnk"]), exp(paramsin["lnK"]), paramsin["theta1"],
paramsin["theta2"], paramsin["theta3"], modell)
y <- ode(N0, timepoints, genlogist, params, method="daspk")
pred <- y[, "1"]
ESS <- log(obsN) - log(pred)
A <- c(ESS^2)
ESS <- sum(A)
plot(y, log="y")
points(timepoints, obsN)
working <<- data.frame(t=timepoints, obsN=obsN, predN=pred)
return(ESS)
}
#---------------------------------------------
timepoints <<- A$time
N0 <<- 5000
obsN <<- A$N
modell <<- 3
params <- c()
params["lnk"] <- -4.69
params["lnK"] <- 33.64
params["theta1"] <- 0.0615
params["theta2"] <- 3.69
params["theta3"] <- 103.534
png("best.png")
best <- optim(params, ObjFunc, gr=NULL, method="Nelder-Mead",
control=list(trace=6, reltol=1e-10, maxit=5000))
#best <- genoud(ObjFunc,
# nvars=6, pop.size=20, starting.values=params, optim.method="Nelder-Mead")
dev.off()
print(best)
## $par
## lnk lnK theta1 theta2 theta3
## -4.75387114 33.66206091 0.06180266 3.71374598 105.27707773
##
## $value
## [1] 1.172276
##
## $counts
## function gradient
## 951 NA
##
## $convergence
## [1] 10
##
## $message
## NULL
print(working)
## t obsN predN
## 1 0.0000 5204.991 5000.000
## 2 143.3962 5972.003 6143.760
## 3 260.3773 4536.490 7532.750
## 4 383.0189 4859.258 9810.019
## 5 500.0000 12719.792 13583.700
## 6 598.1132 12719.792 19515.141
## 7 696.2264 31084.222 32271.285
## 8 792.4528 84211.228 68389.882
## 9 884.9056 300337.803 230430.195
## 10 1052.8302 4859258.466 6315294.051
## 11 1205.6604 25292397.580 25791994.529
## 12 1371.6981 61807332.420 49686290.127
From APPENDIX, p. 315
Figure 8.14 Program listing in R to compute best-fit parameters.
# © Haas, Charles N.; Rose, Joan B.; Gerba, Charles P., Jun 02, 2014,
# Quantitative Microbial Risk Assessment Wiley, Somerset, ISBN: 9781118910528
dose <- c(90000, 9000, 900, 90, 9, 0.9, 0.09, 0.009)
total <- c(3, 7, 8, 9, 11, 7, 7, 7)
positives <- c(3, 5, 7, 8, 8, 1, 0, 0)
dataframe <- data.frame(dose = dose, total = total, positives = positives)
#--------------------------------------------------------------
# Function to Return Predicted Value Given Parameters
pred.betaPoisson <- function(alpha, N50, data) {
f <- 1 - (1 + data$dose * (2^(1 / alpha) - 1) / N50)^-alpha
return(f)
}
#--------------------------------------------------------------
# Function to Return Deviance
deviance <- function(params, data) {
alpha <- params[1]
N50 <- params[2]
fpred <- pred.betaPoisson(alpha, N50, data)
fobs <- data$positives / data$total
# We add small number to prevent taking log(0)
Y1 <- data$positives * log(fpred / (fobs + 1e-15))
Y2 <- (data$total - data$positives) * log((1 - fpred) / (1 - fobs + 1e-15))
Y <- -2 * (sum(Y1) + sum(Y2))
return(Y)
}
#--------------------------------------------------------------
best <-
optim(
c(0.5, 10), deviance, gr = NULL, dataframe, method = "Nelder-Mead",
control = list(trace = 10)
)
## Nelder-Mead direct search function minimizer
## function value for initial parameters = 11.552015
## Scaled convergence tolerance is 1.72138e-07
## Stepsize computed as 1.000000
## BUILD 3 38.993301 11.552015
## HI-REDUCTION 5 25.353893 11.552015
## HI-REDUCTION 7 18.369971 11.552015
## REFLECTION 9 11.842167 7.615474
## REFLECTION 11 11.552015 7.391945
## HI-REDUCTION 13 8.799138 7.391945
## HI-REDUCTION 15 7.853183 7.391945
## HI-REDUCTION 17 7.615474 7.391945
## EXTENSION 19 7.578069 7.282229
## EXTENSION 21 7.391945 6.887240
## LO-REDUCTION 23 7.282229 6.887240
## REFLECTION 25 6.948757 6.872891
## HI-REDUCTION 27 6.887240 6.842524
## HI-REDUCTION 29 6.872891 6.834592
## HI-REDUCTION 31 6.842524 6.820354
## HI-REDUCTION 33 6.834592 6.820354
## REFLECTION 35 6.824886 6.817982
## HI-REDUCTION 37 6.820354 6.816407
## LO-REDUCTION 39 6.817982 6.816320
## HI-REDUCTION 41 6.816407 6.815703
## HI-REDUCTION 43 6.816320 6.815439
## LO-REDUCTION 45 6.815703 6.815327
## HI-REDUCTION 47 6.815439 6.815327
## HI-REDUCTION 49 6.815364 6.815305
## HI-REDUCTION 51 6.815327 6.815305
## HI-REDUCTION 53 6.815308 6.815295
## HI-REDUCTION 55 6.815305 6.815294
## HI-REDUCTION 57 6.815295 6.815292
## HI-REDUCTION 59 6.815294 6.815291
## REFLECTION 61 6.815292 6.815290
## HI-REDUCTION 63 6.815291 6.815290
## HI-REDUCTION 65 6.815290 6.815290
## HI-REDUCTION 67 6.815290 6.815290
## Exiting from Nelder Mead minimizer
## 69 function evaluations used
print(best)
## $par
## [1] 0.2649917 5.5962875
##
## $value
## [1] 6.81529
##
## $counts
## function gradient
## 69 NA
##
## $convergence
## [1] 0
##
## $message
## NULL
From: APPLICATIONS, p. 333
Figure 9.5 R code for bootstrap analysis of mean density for data in Table 6.5.
# © Haas, Charles N.; Rose, Joan B.; Gerba, Charles P., Jun 02, 2014,
# Quantitative Microbial Risk Assessment Wiley, Somerset, ISBN: 9781118910528
library(boot) # Requires the bootstrap package
oocysts <-
c(
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3
)
volume <-
c(
48,51,52,54.9,55,55,55,57,59,59,85.2,100,100,100,100,100,100,100,
100.4,100.4,100.6,100.7,101.7,102,102,102.2,102.2,103.3,185.4,189.3,
189.3,190,191.4,18.4,74.1,99.9,100,100,100,100,100,101.1,101.3,183.5,
193,95.8,223.7,223.7,227.1,89.9,98.4,100
)
data <- data.frame(oocysts = oocysts, volume = volume)
poissonmean <- function(data, weights) {
A <- sum(oocysts * weights)
B <- sum(volume * weights)
return(A / B)
}
bootstrappedpoissonmean <- boot(data, poissonmean, R = 10000)
density <- bootstrappedpoissonmean$t
fig <- ecdf(density)
plot(fig, xlab = "mean density #/L", ylab = 'cumulative<=',
main = '10,000 bootstrap replicates')
From: CHAPTER 9 UNCERTAINTY, p. 334
Figure 9.7 R code for determining the posterior distribution for the negative binomial
# © Haas, Charles N.; Rose, Joan B.; Gerba, Charles P., Jun 02, 2014,
# Quantitative Microbial Risk Assessment Wiley, Somerset, ISBN: 9781118910528
require(cubature) # Numerical integration package (needs to be installed)
require(lattice) # for contour plotting
# Note the global assignment operator
observations <<- c(27,30,60,60,70,70,74,80,81,82,84,84,93,98,98,101,105,110)
#------------- Prior Distribution of Parameters -------
prior <- function(mu, k) {
pmu <- ((mu > 1) & (mu < 500)) / 499
pk <- ((k > 0.01) & (k < 20)) / 19.99
A <- pmu * pk
return(A)
}
#------------- Neg Binomial Distribution --------------
NB <- function(mu, k, x) {
A <-gamma(x + k) / (gamma(k) * factorial(x))
B <-(mu / (k + mu))^x
C <-((k + mu) / k)^(-k)
return(A * B * C)
}
#------------- Likelihood Function --------------------
Likelihood <- function(mu, k, data) {
L <- NB(mu, k, data)
Lik <- prod(L)
return(Lik)
}
#------------- Integrand-------------------------------
# This is a product of the prior and the likelihood
Integrand <- function(y) {
mu <- y[1]
k <- y[2]
# Note reference to global variable
A <- Likelihood(mu, k, observations)
B <- prior(mu, k)
return(A * B)
}
#=====================================================
# First we determine the denominator by integration
I <- adaptIntegrate(Integrand, c(1, .01), c(500, 20), tol = 1e-5)
#-----------------------------------------------------
# Now evaluate the posterior over a grid
mu <- seq(from=60, to=102, by=1)
k <- seq(from=4, to=20, by=.1)
values <- expand.grid(mu=mu, k=k)
posterior <- vector(mode="numeric", length=dim(values)[1])
for (i in 1:dim(values)[1]) {
posterior[i] <- Integrand(c(values[i, 1], values[i, 2]))
posterior[i] <- posterior[i] / I$integral
}
tableau <- (cbind(values, posterior))
contourplot(posterior ~ mu * k, data=tableau, cuts=12, xlim=c(62, 97),
ylim=c(4.0, 20), label.style='align', font=2, ps=17)
From: CHAPTER 6 EXPOSURE ASSESSMENT, p. 337
Figure 9.9 Code snippet for generating samples from posterior for negative binomial
# © Haas, Charles N.; Rose, Joan B.; Gerba, Charles P., Jun 02, 2014,
# Quantitative Microbial Risk Assessment Wiley, Somerset, ISBN: 9781118910528
muMC <- c()
kMC <- c()
neededlength <- 2000
draws <- 0
while (length(kMC) < neededlength) {
mutrial <- runif(1, 1, 500)
ktrial <- runif(1, 0.01, 20)
ztrial <- runif(1, 0, .008)
# Keep track of number of random draws
draws <- draws + 1
PosteriorTrial <- Integrand(c(mutrial, ktrial)) / I$integral
if (PosteriorTrial > ztrial) {
muMC <- c(muMC, mutrial)
kMC <- c(kMC, ktrial)
}
}
plot.new()
plot(muMC, kMC, type="p", xlab="mu", ylab="k")