-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNN.py
44 lines (26 loc) · 1.05 KB
/
NN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Plot ad hoc mnist instances
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score
from sklearn.svm import SVC
from sklearn.metrics import classification_report, confusion_matrix
def getData():
data1 = pd.read_csv('training.txt').values
X_train = data1[:, 0:6]
Y_train = data1[:, 6:7]
data2 = pd.read_csv('testing.txt').values
X_test = data2[:, 0:6]
Y_test = data2[:, 6:7]
return X_train, Y_train, X_test, Y_test
X_train, Y_train, X_test, Y_test = getData()
clf = MLPClassifier(solver='lbfgs', activation = 'logistic', alpha=1e-5,
hidden_layer_sizes=(16, 16), random_state=1, warm_start=True)
clf.fit(X_train, Y_train)
predicted = clf.predict(X_test)
print("********** NN ************\n")
print("Accuracy: ", accuracy_score(Y_test, predicted))
print(confusion_matrix(Y_test, predicted))
print(classification_report(Y_test, predicted))
print("*************************\n\n")