-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathresample.py
56 lines (45 loc) · 1.74 KB
/
resample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import argparse
from pathlib import Path
from concurrent.futures import ProcessPoolExecutor
from multiprocessing import cpu_count
import torchaudio
from torchaudio.functional import resample
from tqdm import tqdm
def process_wav(in_path, out_path, sample_rate):
wav, sr = torchaudio.load(in_path)
wav = resample(wav, sr, sample_rate)
torchaudio.save(out_path, wav, sample_rate)
return out_path, wav.size(-1) / sample_rate
def preprocess_dataset(args):
args.out_dir.mkdir(parents=True, exist_ok=True)
futures = []
executor = ProcessPoolExecutor(max_workers=cpu_count())
print(f"Resampling audio in {args.in_dir}")
for in_path in args.in_dir.rglob("*.wav"):
relative_path = in_path.relative_to(args.in_dir)
out_path = args.out_dir / relative_path
out_path.parent.mkdir(parents=True, exist_ok=True)
futures.append(
executor.submit(process_wav, in_path, out_path, args.sample_rate)
)
results = [future.result() for future in tqdm(futures)]
lengths = {path.stem: length for path, length in results}
seconds = sum(lengths.values())
hours = seconds / 3600
print(f"Wrote {len(lengths)} utterances ({hours:.2f} hours)")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Resample an audio dataset.")
parser.add_argument(
"in_dir", metavar="in-dir", help="path to the dataset directory.", type=Path
)
parser.add_argument(
"out_dir", metavar="out-dir", help="path to the output directory.", type=Path
)
parser.add_argument(
"--sample-rate",
help="target sample rate (default 16kHz)",
type=int,
default=16000,
)
args = parser.parse_args()
preprocess_dataset(args)