forked from 3DOM-FBK/deep-image-matching
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_tiling.py
177 lines (141 loc) · 4.8 KB
/
test_tiling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import kornia
import numpy as np
import pytest
import torch
from deep_image_matching.utils.tiling import Tiler
@pytest.fixture
def tiler():
return Tiler()
def konria_071(base_version: str = "0.7.1"):
try:
from packaging import version
except ImportError:
return False
return version.parse(kornia.__version__) == version.parse(base_version)
def test_compute_tiles_by_size_no_overlap_no_padding(tiler):
# Create a numpy array with shape (100, 100, 3)
input_shape = (100, 100, 3)
input_image = np.random.randint(0, 255, input_shape, dtype=np.uint8)
window_size = 50
overlap = 0
tiles, origins, padding = tiler.compute_tiles_by_size(
input_image, window_size, overlap
)
# Assert the output types and shapes
assert isinstance(tiles, dict)
assert isinstance(origins, dict)
assert isinstance(padding, tuple)
if konria_071():
assert len(padding) == 2
else:
assert len(padding) == 4
# Assert the number of tiles and origins
assert len(tiles) == 4
assert len(origins) == 4
# Assert the shape of the tiles
for tile in tiles.values():
assert tile.shape == (window_size, window_size, 3)
# Assert the padding values
if konria_071():
assert padding == (0, 0)
else:
assert padding == (0, 0, 0, 0)
def test_compute_tiles_by_size_no_overlap_padding(tiler):
# Create a numpy array with shape (100, 100, 3)
input_shape = (100, 100, 3)
input_image = np.random.randint(0, 255, input_shape, dtype=np.uint8)
window_size = 40
overlap = 0
tiles, origins, padding = tiler.compute_tiles_by_size(
input_image, window_size, overlap
)
# Assert the output types and shapes
assert isinstance(tiles, dict)
assert isinstance(origins, dict)
assert isinstance(padding, tuple)
if konria_071():
assert len(padding) == 2
else:
assert len(padding) == 4
# Assert the number of tiles and origins
assert len(tiles) == 9
assert len(origins) == 9
# Assert the shape of the tiles
for tile in tiles.values():
assert tile.shape == (window_size, window_size, 3)
# Assert the padding values
if konria_071():
assert padding == (10, 10)
else:
assert padding == (10, 10, 10, 10)
def test_compute_tiles_by_size_overlap_no_padding(tiler):
# Create a numpy array with shape (100, 100, 3)
input_shape = (100, 100, 3)
input_image = np.random.randint(0, 255, input_shape, dtype=np.uint8)
window_size = 50
overlap = 10
tiles, origins, padding = tiler.compute_tiles_by_size(
input_image, window_size, overlap
)
# Assert the output types and shapes
assert isinstance(tiles, dict)
assert isinstance(origins, dict)
assert isinstance(padding, tuple)
if konria_071():
assert len(padding) == 2
else:
assert len(padding) == 4
# Assert the number of tiles and origins
assert len(tiles) == 4
assert len(origins) == 4
# Assert the shape of the tiles
for tile in tiles.values():
assert tile.shape == (window_size, window_size, 3)
# Assert the padding values
if konria_071():
assert padding == (0, 0)
else:
assert padding == (0, 0, 0, 0)
def test_compute_tiles_by_size_with_torch_tensor(tiler):
# Create a torch tensor with shape (3, 100, 100)
channels = 3
input_shape = (channels, 100, 100)
input_image = torch.randint(0, 255, input_shape, dtype=torch.uint8)
window_size = (50, 50)
overlap = (0, 0)
tiles, origins, padding = tiler.compute_tiles_by_size(
input_image, window_size, overlap
)
# Assert the output types and shapes
assert isinstance(tiles, dict)
assert isinstance(origins, dict)
assert isinstance(padding, tuple)
if konria_071():
assert len(padding) == 2
else:
assert len(padding) == 4
# Assert the number of tiles and origins
assert len(tiles) == 4
assert len(origins) == 4
# Assert the shape of the tiles
for tile in tiles.values():
assert tile.shape == (window_size[0], window_size[1], channels)
# Assert the padding values
if konria_071():
assert padding == (0, 0)
else:
assert padding == (0, 0, 0, 0)
def test_compute_tiles_by_size_with_invalid_input(tiler):
# Create an invalid window_size (a string)
input_image = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)
window_size = "32"
overlap = 8
with pytest.raises(TypeError):
tiler.compute_tiles_by_size(input_image, window_size, overlap)
# Create an invalid overlap (a float)
window_size = 32
overlap = 8.0
with pytest.raises(TypeError):
tiler.compute_tiles_by_size(input_image, window_size, overlap)
if __name__ == "__main__":
pytest.main([__file__])