A high-performance Python package for handling ETAS DCM(Data Conversion Format) files used in engine calibration tools like INCA, MDA, EHANDBOOK, and CANape.
from dcm import DCM
# Read a DCM file
dcm = DCM.from_file('calibration.dcm')
# Access calibration data
parameter_value = dcm.parameters['ENGINE_SPEED'].value
map_data = dcm.maps['FUEL_MAP'].dataframe
curve_data = dcm.curves['BOOST_CURVE'].series
# Interpolate values
x_points = [1000, 1500, 2000] # RPM
y_points = [50, 75, 100] # Load %
interpolated = dcm.maps['FUEL_MAP'].as_function(x_points, y_points)
# Visualize data
dcm.maps['FUEL_MAP'].to_figure()
- Easy Data Access: Directly access parameters, curves, and maps with Pandas integration
- Interpolation: Built-in 1D/2D linear interpolation for real-time value calculation
- Visualization: One-line plotting of characteristic curves and maps
- Excel Integration: Import/export calibration data from Excel spreadsheets
- Set Operations: Compare and merge DCM files with
|
,-
,&
, and%
operators - Type Support: Handle all DCM data types including fixed/group characteristics
Requires Python ≥ 3.10
pip install python-dcm
# Get parameter value
rpm_limit = dcm.parameters['MAX_RPM'].value
# Access map as DataFrame
fuel_map = dcm.maps['FUEL_MAP'].dataframe
fuel_map.iloc[0, 0] = 14.7 # Modify value
# Get curve data
boost_curve = dcm.curves['BOOST_CURVE'].series
max_boost = boost_curve.max()
# Load calibration data from Excel
dcm.load_from_excel(
maps_path='maps.xlsx',
curves_path='curves.xlsx',
parameters_path='params.xlsx'
)
# Each sheet name becomes the calibration object name
import matplotlib.pyplot as plt
# Plot a map with custom settings
fig, ax = dcm.maps['FUEL_MAP'].to_figure(
cmap='viridis',
fontsize=12
)
plt.show()
# Plot multiple curves
fig, ax = plt.subplots()
dcm.curves['BOOST_LOW'].to_figure(ax=ax, label='Low')
dcm.curves['BOOST_HIGH'].to_figure(ax=ax, label='High')
plt.legend()
param = dcm.parameters['CONTROL_BITS']
binary = param.as_bin() # [1, 3, 5] (bits set to 1)
hex_val = param.as_hex() # [A, F, 1] (hexadecimal digits)
# Find differences between calibrations
modified = old_dcm % new_dcm
print(modified.parameters.keys()) # Changed parameters
# Merge calibrations
combined = dcm1 | dcm2
- Parameters (FESTWERT)
- Parameter Blocks (FESTWERTEBLOCK)
- Characteristic Lines (KENNLINIE/FESTKENNLINIE/GRUPPENKENNLINIE)
- Characteristic Maps (KENNFELD/FESTKENNFELD/GRUPPENKENNFELD)
- Distributions (STUETZSTELLENVERTEILUNG)
- Text Strings (TEXTSTRING)
- NumPy ≥ 1.20.0
- Pandas ≥ 1.5.0
- Matplotlib ≥ 3.0.0
- OpenPyXL ≥ 3.1.0
MIT License
Contributions welcome! Please format code with ruff before submitting PRs.
- Author: c0sogi
- Email: [email protected] or [email protected]
Feel free to reach out for questions or suggestions.
For detailed documentation and examples, visit our GitHub repository.