We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
root@27e30a88143c:/SReC# python3 -um src.encode Using torchac: True ['/SReC/src/encode.py'] Loaded model from models/openimages.pth. Epoch: 49 ModuleList( (0): ModuleList( (0): Identity() (1): Upsampler( (0): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): PixelShuffle(upscale_factor=2) (2): Identity() ) (2): Upsampler( (0): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): PixelShuffle(upscale_factor=2) (2): Identity() ) ) (1): ModuleList( (0): StrongPixDecoder( (loss_fn): DiscretizedMixLogisticLoss(DMLL: x=(0, 255), L=256, coeffs=True, P=4, bin_width=1.0) (rgb_decs): ModuleList( (0): EDSRDec( (head): Conv2d(3, 64, kernel_size=(1, 1), stride=(1, 1)) (body): Sequential( (0): ResBlock(Conv(64x3)/Act/Conv(64x3)) (1): ResBlock(Conv(64x3)/Act/Conv(64x3)) (2): ResBlock(Conv(64x3)/Act/Conv(64x3)) (3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (tail): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1)) ) (1): EDSRDec( (head): Conv2d(6, 64, kernel_size=(1, 1), stride=(1, 1)) (body): Sequential( (0): ResBlock(Conv(64x3)/Act/Conv(64x3)) (1): ResBlock(Conv(64x3)/Act/Conv(64x3)) (2): ResBlock(Conv(64x3)/Act/Conv(64x3)) (3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (tail): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1)) ) (2): EDSRDec( (head): Conv2d(9, 64, kernel_size=(1, 1), stride=(1, 1)) (body): Sequential( (0): ResBlock(Conv(64x3)/Act/Conv(64x3)) (1): ResBlock(Conv(64x3)/Act/Conv(64x3)) (2): ResBlock(Conv(64x3)/Act/Conv(64x3)) (3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (tail): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1)) ) ) (mix_logits_prob_clf): ModuleList( (0): AtrousProbabilityClassifier(C=3; K=10; Kp=120; rates=1,2,4) (1): AtrousProbabilityClassifier(C=3; K=10; Kp=120; rates=1,2,4) (2): AtrousProbabilityClassifier(C=3; K=10; Kp=120; rates=1,2,4) ) (feat_convs): ModuleList( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) ) (1): StrongPixDecoder( (loss_fn): DiscretizedMixLogisticLoss(DMLL: x=(0, 255), L=256, coeffs=True, P=4, bin_width=1.0) (rgb_decs): ModuleList( (0): EDSRDec( (head): Conv2d(3, 64, kernel_size=(1, 1), stride=(1, 1)) (body): Sequential( (0): ResBlock(Conv(64x3)/Act/Conv(64x3)) (1): ResBlock(Conv(64x3)/Act/Conv(64x3)) (2): ResBlock(Conv(64x3)/Act/Conv(64x3)) (3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (tail): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1)) ) (1): EDSRDec( (head): Conv2d(6, 64, kernel_size=(1, 1), stride=(1, 1)) (body): Sequential( (0): ResBlock(Conv(64x3)/Act/Conv(64x3)) (1): ResBlock(Conv(64x3)/Act/Conv(64x3)) (2): ResBlock(Conv(64x3)/Act/Conv(64x3)) (3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (tail): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1)) ) (2): EDSRDec( (head): Conv2d(9, 64, kernel_size=(1, 1), stride=(1, 1)) (body): Sequential( (0): ResBlock(Conv(64x3)/Act/Conv(64x3)) (1): ResBlock(Conv(64x3)/Act/Conv(64x3)) (2): ResBlock(Conv(64x3)/Act/Conv(64x3)) (3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (tail): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1)) ) ) (mix_logits_prob_clf): ModuleList( (0): AtrousProbabilityClassifier(C=3; K=10; Kp=120; rates=1,2,4) (1): AtrousProbabilityClassifier(C=3; K=10; Kp=120; rates=1,2,4) (2): AtrousProbabilityClassifier(C=3; K=10; Kp=120; rates=1,2,4) ) (feat_convs): ModuleList( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) ) (2): StrongPixDecoder( (loss_fn): DiscretizedMixLogisticLoss(DMLL: x=(0, 255), L=256, coeffs=True, P=4, bin_width=1.0) (rgb_decs): ModuleList( (0): EDSRDec( (head): Conv2d(3, 64, kernel_size=(1, 1), stride=(1, 1)) (body): Sequential( (0): ResBlock(Conv(64x3)/Act/Conv(64x3)) (1): ResBlock(Conv(64x3)/Act/Conv(64x3)) (2): ResBlock(Conv(64x3)/Act/Conv(64x3)) (3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (tail): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1)) ) (1): EDSRDec( (head): Conv2d(6, 64, kernel_size=(1, 1), stride=(1, 1)) (body): Sequential( (0): ResBlock(Conv(64x3)/Act/Conv(64x3)) (1): ResBlock(Conv(64x3)/Act/Conv(64x3)) (2): ResBlock(Conv(64x3)/Act/Conv(64x3)) (3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (tail): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1)) ) (2): EDSRDec( (head): Conv2d(9, 64, kernel_size=(1, 1), stride=(1, 1)) (body): Sequential( (0): ResBlock(Conv(64x3)/Act/Conv(64x3)) (1): ResBlock(Conv(64x3)/Act/Conv(64x3)) (2): ResBlock(Conv(64x3)/Act/Conv(64x3)) (3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (tail): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1)) ) ) (mix_logits_prob_clf): ModuleList( (0): AtrousProbabilityClassifier(C=3; K=10; Kp=120; rates=1,2,4) (1): AtrousProbabilityClassifier(C=3; K=10; Kp=120; rates=1,2,4) (2): AtrousProbabilityClassifier(C=3; K=10; Kp=120; rates=1,2,4) ) (feat_convs): ModuleList( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) ) ) ) Loaded directory with 12 images Traceback (most recent call last): File "/opt/conda/lib/python3.6/runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "/opt/conda/lib/python3.6/runpy.py", line 85, in _run_code exec(code, run_globals) File "/SReC/src/encode.py", line 141, in main() File "/opt/conda/lib/python3.6/site-packages/click/core.py", line 764, in call return self.main(*args, **kwargs) File "/opt/conda/lib/python3.6/site-packages/click/core.py", line 717, in main rv = self.invoke(ctx) File "/opt/conda/lib/python3.6/site-packages/click/core.py", line 956, in invoke return ctx.invoke(self.callback, **ctx.params) File "/opt/conda/lib/python3.6/site-packages/click/core.py", line 555, in invoke return callback(*args, **kwargs) File "/SReC/src/encode.py", line 96, in main x, filepath) File "/SReC/src/l3c/bitcoding.py", line 80, in encode self.encode_uniform(y_i, levels, fout) File "/SReC/src/l3c/bitcoding.py", line 155, in encode_uniform assert S.shape[0] % 4 == 0 AssertionError
The text was updated successfully, but these errors were encountered:
No branches or pull requests
root@27e30a88143c:/SReC# python3 -um src.encode
Using torchac: True
['/SReC/src/encode.py']
Loaded model from models/openimages.pth.
Epoch: 49
ModuleList(
(0): ModuleList(
(0): Identity()
(1): Upsampler(
(0): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PixelShuffle(upscale_factor=2)
(2): Identity()
)
(2): Upsampler(
(0): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PixelShuffle(upscale_factor=2)
(2): Identity()
)
)
(1): ModuleList(
(0): StrongPixDecoder(
(loss_fn): DiscretizedMixLogisticLoss(DMLL: x=(0, 255), L=256, coeffs=True, P=4, bin_width=1.0)
(rgb_decs): ModuleList(
(0): EDSRDec(
(head): Conv2d(3, 64, kernel_size=(1, 1), stride=(1, 1))
(body): Sequential(
(0): ResBlock(Conv(64x3)/Act/Conv(64x3))
(1): ResBlock(Conv(64x3)/Act/Conv(64x3))
(2): ResBlock(Conv(64x3)/Act/Conv(64x3))
(3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(tail): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
)
(1): EDSRDec(
(head): Conv2d(6, 64, kernel_size=(1, 1), stride=(1, 1))
(body): Sequential(
(0): ResBlock(Conv(64x3)/Act/Conv(64x3))
(1): ResBlock(Conv(64x3)/Act/Conv(64x3))
(2): ResBlock(Conv(64x3)/Act/Conv(64x3))
(3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(tail): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
)
(2): EDSRDec(
(head): Conv2d(9, 64, kernel_size=(1, 1), stride=(1, 1))
(body): Sequential(
(0): ResBlock(Conv(64x3)/Act/Conv(64x3))
(1): ResBlock(Conv(64x3)/Act/Conv(64x3))
(2): ResBlock(Conv(64x3)/Act/Conv(64x3))
(3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(tail): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
)
)
(mix_logits_prob_clf): ModuleList(
(0): AtrousProbabilityClassifier(C=3; K=10; Kp=120; rates=1,2,4)
(1): AtrousProbabilityClassifier(C=3; K=10; Kp=120; rates=1,2,4)
(2): AtrousProbabilityClassifier(C=3; K=10; Kp=120; rates=1,2,4)
)
(feat_convs): ModuleList(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(1): StrongPixDecoder(
(loss_fn): DiscretizedMixLogisticLoss(DMLL: x=(0, 255), L=256, coeffs=True, P=4, bin_width=1.0)
(rgb_decs): ModuleList(
(0): EDSRDec(
(head): Conv2d(3, 64, kernel_size=(1, 1), stride=(1, 1))
(body): Sequential(
(0): ResBlock(Conv(64x3)/Act/Conv(64x3))
(1): ResBlock(Conv(64x3)/Act/Conv(64x3))
(2): ResBlock(Conv(64x3)/Act/Conv(64x3))
(3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(tail): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
)
(1): EDSRDec(
(head): Conv2d(6, 64, kernel_size=(1, 1), stride=(1, 1))
(body): Sequential(
(0): ResBlock(Conv(64x3)/Act/Conv(64x3))
(1): ResBlock(Conv(64x3)/Act/Conv(64x3))
(2): ResBlock(Conv(64x3)/Act/Conv(64x3))
(3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(tail): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
)
(2): EDSRDec(
(head): Conv2d(9, 64, kernel_size=(1, 1), stride=(1, 1))
(body): Sequential(
(0): ResBlock(Conv(64x3)/Act/Conv(64x3))
(1): ResBlock(Conv(64x3)/Act/Conv(64x3))
(2): ResBlock(Conv(64x3)/Act/Conv(64x3))
(3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(tail): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
)
)
(mix_logits_prob_clf): ModuleList(
(0): AtrousProbabilityClassifier(C=3; K=10; Kp=120; rates=1,2,4)
(1): AtrousProbabilityClassifier(C=3; K=10; Kp=120; rates=1,2,4)
(2): AtrousProbabilityClassifier(C=3; K=10; Kp=120; rates=1,2,4)
)
(feat_convs): ModuleList(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(2): StrongPixDecoder(
(loss_fn): DiscretizedMixLogisticLoss(DMLL: x=(0, 255), L=256, coeffs=True, P=4, bin_width=1.0)
(rgb_decs): ModuleList(
(0): EDSRDec(
(head): Conv2d(3, 64, kernel_size=(1, 1), stride=(1, 1))
(body): Sequential(
(0): ResBlock(Conv(64x3)/Act/Conv(64x3))
(1): ResBlock(Conv(64x3)/Act/Conv(64x3))
(2): ResBlock(Conv(64x3)/Act/Conv(64x3))
(3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(tail): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
)
(1): EDSRDec(
(head): Conv2d(6, 64, kernel_size=(1, 1), stride=(1, 1))
(body): Sequential(
(0): ResBlock(Conv(64x3)/Act/Conv(64x3))
(1): ResBlock(Conv(64x3)/Act/Conv(64x3))
(2): ResBlock(Conv(64x3)/Act/Conv(64x3))
(3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(tail): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
)
(2): EDSRDec(
(head): Conv2d(9, 64, kernel_size=(1, 1), stride=(1, 1))
(body): Sequential(
(0): ResBlock(Conv(64x3)/Act/Conv(64x3))
(1): ResBlock(Conv(64x3)/Act/Conv(64x3))
(2): ResBlock(Conv(64x3)/Act/Conv(64x3))
(3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(tail): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
)
)
(mix_logits_prob_clf): ModuleList(
(0): AtrousProbabilityClassifier(C=3; K=10; Kp=120; rates=1,2,4)
(1): AtrousProbabilityClassifier(C=3; K=10; Kp=120; rates=1,2,4)
(2): AtrousProbabilityClassifier(C=3; K=10; Kp=120; rates=1,2,4)
)
(feat_convs): ModuleList(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
)
)
Loaded directory with 12 images
Traceback (most recent call last):
File "/opt/conda/lib/python3.6/runpy.py", line 193, in _run_module_as_main
"main", mod_spec)
File "/opt/conda/lib/python3.6/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/SReC/src/encode.py", line 141, in
main()
File "/opt/conda/lib/python3.6/site-packages/click/core.py", line 764, in call
return self.main(*args, **kwargs)
File "/opt/conda/lib/python3.6/site-packages/click/core.py", line 717, in main
rv = self.invoke(ctx)
File "/opt/conda/lib/python3.6/site-packages/click/core.py", line 956, in invoke
return ctx.invoke(self.callback, **ctx.params)
File "/opt/conda/lib/python3.6/site-packages/click/core.py", line 555, in invoke
return callback(*args, **kwargs)
File "/SReC/src/encode.py", line 96, in main
x, filepath)
File "/SReC/src/l3c/bitcoding.py", line 80, in encode
self.encode_uniform(y_i, levels, fout)
File "/SReC/src/l3c/bitcoding.py", line 155, in encode_uniform
assert S.shape[0] % 4 == 0
AssertionError
The text was updated successfully, but these errors were encountered: